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ABSTRACT 
 
 
 
This thesis investigates the feasibility and performance of using Direct-Sequence 

Spread-Spectrum (DSSS) modulation for utility-packet transmission in Seaweb 

underwater wireless acoustic communications networks.  Seaweb networks require robust 

channel-tolerant utility packets having a low probability of detection (LPD) and allowing 

for multi-user access.  MATLAB code simulated the DSSS transmitter and receiver 

structures and a modeled channel impulse response represented the underwater 

environment.  The specific modulation scheme implemented is direct-sequence, 

differentially encoded binary phase-shift keying (DS-DBPSK) with quadrature spreading.  

Performance is examined using Monte Carlo simulation.  Bit error rates and packet error 

rates for various signal-to-noise ratios and channel conditions are presented and the use 

of a RAKE receiver, forward error-correction coding and symbol interleaving are 

examined for improving system performance.   
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EXECUTIVE SUMMARY 
 
 
 

Underwater acoustic communications have a wide variety of applications in 

undersea warfare.  These applications include wireless networked sensor telemetry in 

littoral areas, controlling of minefields and networking of surface vessels, submarines, 

Unmanned Underwater Vehicles (UUVs) and divers.  The underwater communications 

channel is impaired by its band-limited nature and multipath propagation.  Direct-

Sequence Spread-Spectrum (DSSS) has proven to be very effective in radio frequency 

(RF) wireless networks, which experience similar difficulties.  If the same robust 

performance can be achieved in the underwater acoustic channel, then the future design 

and development of underwater networks can incorporate many of the techniques that 

have proven so successful in RF wireless networks. 

This thesis investigates the feasibility and performance of using DSSS modulation 

for utility packet transmission in Seaweb, an underwater wireless acoustic 

communications network.  The Seaweb network requires robust channel-tolerant utility 

packets having a low probability of detection (LPD) and allowing for multi-user access.  

The transmitter and receiver structures are simulated in MATLAB and the underwater 

environment are represented by a modeled channel impulse response.  The specific 

modulation scheme implemented is direct-sequence, differentially encoded binary phase-

shift keying (DS-DBPSK) with quadrature spreading.  The performance of DSSS 

modulation is examined using Monte Carlo simulation.  Bit error rates and packet error 

rates for various signal-to-noise ratios and channel conditions are presented and the use 

of a RAKE receiver and forward error-correction coding are examined for improving 

system performance. 

The results show that DSSS modulation is well suited for communications in the 

underwater environment.  Bit error rates below 10  are achievable using soft decision 

Viterbi decoding and a RAKE receiver that adaptively places the RAKE taps to coincide 

with the multipath arrivals.  The limitations in the modem’s performance are associated 

with poor acquisition algorithm performance at low signal-to-noise ratios.  
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I. INTRODUCTION 

A. BACKGROUND 

The primary focus of this research is to determine the feasibility and performance 

of using Direct-Sequence Spread-Spectrum (DSSS) as the modulation scheme for utility 

packet transmission in Seaweb.  Seaweb is an experimental underwater acoustic 

communication network being developed by the Space and Naval Warfare Systems 

Center, San Diego [1].  The utility packets in the network are fixed-length, 72-bit 

sequences.  They serve many functions in the network including initialization, probing 

the channel and controlling data transfer between nodes in the network.  At present the 

utility packets, like the data packets, use M-ary Frequency-Shift Keying (MFSK) as their 

modulation scheme.  For military communications applications, MFSK has two 

significant drawbacks in that it is easily detectable by unauthorized intercept receivers 

and requires time-division or frequency-division multi-access techniques.  In the next 

evolution of Seaweb, the requirement is to have a utility packet that is highly reliable and 

channel tolerant, but also has a low probability of detection (LPD), low probability of 

intercept (LPI) and allows for code division multiple access.  Spread-spectrum techniques 

naturally lend themselves to these requirements.  Therefore either Frequency Hopped 

Spread-Spectrum (FHSS) or DSSS are candidate modulation schemes.  Our research is 

confined to the design and analysis of a DSSS modem. 

 

B. SEAWEB UTILITY PACKET REQUIREMENTS 

As already mentioned, the utility packets are fixed-length sequences of 72 bits.  

The present acoustic bandwidth available to the Seaweb network is 9 to 14 kHz.  A DSSS 

transmission is to be used to meet the LPD signaling requirements, which means that the 

chip rates and therefore the data rates are low.  However, bit rates on the order of 10 to 

100 bits per second are deemed acceptable.  A ½-rate convolutional coder of constraint 

length 9 and soft decision de-coding with 4-bit quantization is desired.  Communication 

ranges should be between three to five kilometers.  Having bit error rates (BERs) less 

 1 



than 10  is also desirable and is consistent with acceptable standards in RF 

communications.  

5−

 

C. GOALS AND METHODOLOGY 

The goal of this thesis is to develop, in software, a DSSS modem, suitable for 

underwater acoustic communications and to examine its performance through Monte 

Carlo simulation.  The experimental Seaweb modem presented here is only for utility 

packet transmissions and is not yet in use in the Seaweb system.  The transmitter and 

receiver structures are implemented in MATLAB.  The receiver software is designed to 

process the received signal bit by bit, just as would be done in a future hardware modem.  

The channel is modeled first as an ideal additive white Gaussian noise (AWGN) channel 

in order to compare simulation results to well-known theoretical performance of DSSS in 

such a channel.  Next, an impulse response representative of an underwater acoustic 

channel is modeled to examine the system’s performance in a multipath environment.  

BERs for various signal-to-noise ratios (SNRs) are measured for Direct-Sequence 

Differential Binary Phase-Shift Keying with quadrature spreading (DS-IQ-DBPSK).  

Lastly, two techniques for improving system performance are examined.  These are 

convolutional error-correction coding and multipath diversity reception using a RAKE 

receiver. 

 

D. BENEFITS OF THE STUDY 

Underwater networks employing wireless acoustic communications have a wide 

variety of applications in undersea warfare.  These applications include networked sensor 

telemetry in littoral areas, controlling of minefields and networking of surface vessels, 

submarines, Unmanned Underwater Vehicles (UUVs) and divers.  With the drive to 

implement network centric warfare in all environments, reliable wireless underwater 

communication is important to the Navy.  DSSS has proven to be very effective in radio 

frequency (RF) wireless networks and is therefore widely used.  If the same robust 

performance can be achieved in the underwater acoustic channel, then the future design 
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and development of underwater networks can incorporate many of the techniques that 

have proven so successful in RF wireless networks. 

 

E. THESIS ORGANIZATION 

This thesis is organized into five remaining chapters.  Chapter II discusses the 

characteristics of the underwater acoustic communication channel and addresses why it is 

arguably the most challenging communications medium in the battle space.  Chapter III 

develops the theory behind DS-IQ-BPSK and the advantages that DSSS offers to 

communications in the undersea environment.  This chapter also describes how the 

transmitter and receiver structures are implemented in this application.  Chapter IV 

details the specific design parameters used in this Seaweb modem design.  Chapter V 

examines both the theoretical and modeled performance of the modem in an ideal 

additive white Gaussian noise channel and a modeled channel.  Finally, Chapter VI 

reviews the important results and concludes with recommendations for future study.  

Future work includes investigating improved signal processing algorithms in the receiver, 

comparing simulated and experimental performance, eventually implementing of the 

modem in hardware and integrating into the next generation of Seaweb modems.   
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II. UNDERWATER ACOUSTIC COMMUNICATION CHANNEL 
CHARACTERISTICS 

This chapter discusses the characteristics of the underwater acoustic channel and 

the difficulties it imposes on communications signals.  Unlike radio frequency (RF) 

communications, which use electromagnetic waves, underwater communications use 

acoustic pressure waves to propagate signals through the medium.  The challenges that 

this imposes ensue from three primary impairments.  First, the channel is severely band-

limited.  High frequencies are strongly attenuated in the ocean, which result in relatively 

small transmission bandwidths and relatively low data rates compared to those achievable 

in RF communications.  Second, ocean noise is non-Gaussian and results from numerous 

mechanisms including weather, surface wave action, biologics, shipping and industrial 

noise near the coastline.  Lastly, severe fading occurs as a result of destructive 

interference.  Reflections off the sea surface and the sea bottom, as well as scattering 

from inhomogeneities in the water column, result in multiple arrivals of the signal at the 

receiver.  These multiple arrivals superimpose on each other and distort the signal in 

amplitude and phase.  Likewise, the motion of the source, the receiver and the medium 

itself result in Doppler shifts and Doppler spreading, which further distort the signal.  

Figure 1 illustrates some of these time-varying processes. 

 
Figure 1.   Some of the major processes affecting fading in the underwater acoustic 

communications channel [From Ref. 2]. 
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A. BAND-LIMITED CHANNEL 

The bandwidth of the underwater acoustic communication channel is severely 

restricted by the transmission loss (i.e., large-scale fading).  The two dominant factors 

affecting transmission loss are spreading and attenuation [3].  Spreading is a geometric 

effect caused when the intensity of the sound field weakens as the field expands over a 

larger volume.  Transmission loss due to spreading is proportional to 1/  for spherical 

spreading, or 1/  for cylindrical spreading where 

2R

R R  is the range between the source and 

receiver.  In shallow water channels, spreading behavior is typically between spherical 

and cylindrical and is here assumed to be 1/ . 3/ 2R

Attenuation involves the absorption and scattering of the sound wave as it 

propagates.  Absorption is the most significant mechanism of the two and involves 

conversion of the acoustic energy into heat.  Scattering occurs from the sea surface, ocean 

bottom and from inhomogeneities in the volume of the ocean.  Scattering is generally a 

hindrance to propagation because scattering increases the attenuation of the signal due to 

poor directionality.  In practice however, distinguishing between the two effects is 

impossible and therefore they are combined into one term.  Figure 2 shows the strong 

dependence of attenuation with frequency and this dependence is divided into four 

regions.   

 6 



 
Figure 2.   Attenuation coefficient for acoustic energy in seawater [From Ref. 4]. 

 

Regions II and III are dominated by the chemical relaxation of two constituents in 

seawater.  The viscosity of the seawater dominates Region IV.  The effects of Region I 

are not well understood. 

An analytic expression for the attenuation coefficient can also be given as: 

 
2 2

3
2 2

0.11 443.3 10 3.0 10
1 4,100

f f 4 2f
f f

α −× + + + ×
+ +

� −  (2.1) 

where f is the frequency in kHz and  is in dB/km [4] and the four terms are 

sequentially associated with the four regions in Figure 2.  With both spreading and 

absorption, the overall transmission loss (TL) expression is given by:  

α

  (2.2) -315log 10TL R Rα= + ×

where R is in km and TL is in decibels referenced to 1 micro-Pascal (dB re 1 ) [3]. µPa
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B. NON-GAUSSIAN NOISE CHANNEL 

Noise in the underwater communication channel is non-Gaussian.  Different 

sources dominate in different bands and noise levels vary greatly over time and 

geographic location.  Therefore, developing good statistical representations of the noise is 

difficult.  Experimental observations [3] show that at the lower frequencies (below 10 

Hz) ambient noise is dominated by ocean turbulence.  Noise between 50 Hz to 500 Hz is 

dominated by distant shipping and depends on the geographic location.  At higher 

frequencies, 500 Hz to 50 kHz, the roughness of the sea surface dominates the noise 

spectrum.  Sea surface roughness is directly related to the wind speeds at the sea surface 

and is therefore weather dependent.  Lastly, at high frequencies above 50 kHz, the 

thermal noise, due to the motion of the molecules of the sea itself, is the dominant source 

of ambient noise.  General expressions for ambient noise levels in the deep sea may be 

expressed as: 

1 17 30logNL f Turblence Noise= −  (2.3) 

2 40 20( 0.5) 26log 60log( 0.03)NL D f f Shipping Noise= + − + − +  (2.4) 

1/ 2
3 50 7.5 20log 40log( 0.4)NL w f f SurfaceWaves= + + − +  (2.5) 

4 15 20logNL f Thermal Noise= − +  (2.6) 

where  is the ambient noise level in dB re 1 , NL µPa f is the frequency in Hz,  is the 

shipping density on a scale from 0 (very light) to 1 (heavy) and  is the wind speed in 

m/s [5].  Using the above expressions, Figure 3 shows one example of the cumulative 

effects of these sources over a broad frequency range, for a nominal wind speed of 10 m/s 

(20 knots) and light shipping (D=0.5).  In the frequency band of interest, 9 to 14 kHz, the 

dominant noise source is wind-induced sea surface roughness.   

D

w
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Figure 3.   Deep-water ambient noise spectrum level, with light shipping and nominal 

sea surface wind speed of 10 m/s (Sea State 4). 
 

In the shallow water channel additional sources of noise from biologics and 

coastal industry exist.  The overall noise varies significantly between the times of day, the 

seasons, geographic locations, shipping density and weather and exhibits a large dynamic 

range.  All this leads to a very noisy channel, which has characteristics that are quite 

difficult to represent statistically. 

When  and  are combined, the overall range and frequency dependence of 

the channel becomes apparent as illustrated in Figure 4. 

NL TL
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Figure 4.   Frequency and range dependence of the underwater communications channel 

for the combined effects of noise level (NL) and transmission loss (TL). 

 

We can see that the experimental Seaweb modem’s 9 to 14 kHz band is consistent with 

its range requirements of 3 to 5 km.  However, when compared to the radio frequency 

communications channel, these are extremely small bandwidths.  For example, the IEEE 

802.11b standard for wireless networks uses DSSS and operates in the 2.4 GHz band at a 

data rate of between 1 to 11 megabits per second (Mbps). 

 

C. FADING CHANNEL 

Small-scale fading in digital communications channels is the result of two 

mechanisms, the time spreading of the signal and the time-variant nature of the channel. 
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1. Time Spreading 

Time spreading or time dispersion occurs when multiple versions of the 

transmitted signal arrive at the receiver.  This is also called multipath propagation.  In the 

underwater channel these multipath arrivals result from reflections off the sea surface and 

sea bottom, refraction and scatterers within the ocean volume.  The reflection and 

refraction pattern of the sound waves is directly related to the geometry of the channel 

and the sound velocity profile.  Figure 5 shows one example of sound wave propagation 

in the underwater channel, where  is the depth, c is the sound speed and r  is the range.   z

 
Figure 5.   An example of sound propagation in a shallow water where (a) is the sound 

speed profile and (b) is a ray diagram representing two sound rays 
propagating from the source [From Ref. 6]. 

 

The random amplitude and phase of the multiple arrivals cause fluctuations in the 

received signal strength.  The channel impulse response  is one way of 

characterizing the effect of multipath in a channel.  However, in communication channels 

it is more common to refer to the multipath intensity profile (MIP), which is a measure of 

the average received power  as a function of the excess delay  for a transmitted 

impulse.  The excess delay is the time delay that occurs after the first arrival of the signal.  

An example of a MIP is seen in Figure 6. 

(τ)h

(τ)S τ
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Figure 6.   An example of a Multipath Intensity Profile [From Ref. 7]. 

 

The maximum excess delay T  is the time during which the MIP is essentially 

non-zero.  In the frequency domain, the time-spread signal can be classified by its 

coherence bandwidth .  The  is a statistical measure of the bandwidth over 

which the channel passes all frequency components with equal gain and equal phase.  

This also means that the frequency components are well correlated and that the channel’s 

frequency-transfer function is essentially flat. T  and  are related by 

m

COHCOHB B

m COHB 1/COH mB T≈ .  

However, this is not the best way to classify a channel because the  may vary 

significantly for channels with the same T .  Therefore a more useful parameter is the 

root mean squared delay spread  given by: 

(τ)S

m

τσ

 2
τσ τ τ= − 2  (2.7) 

where τ is the mean excess delay [8].  If  is then defined as the frequency interval 

over which the channel’s complex frequency transfer function has a correlation of at least 

0.9, then  becomes [8]: 

COHB

COHB

 1
50σCOHB ≈  (2.8) 

A time dispersive channel can be classified as frequency selective or frequency 

non-selective.  In a frequency selective channel, the signal bandwidth W  is larger than 

the coherence bandwidth 

S

COH SB W<  and therefore significant distortion occurs since the 
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spectral components of the signal are affected differently.  In the time domain, this means 

that the symbol duration is much smaller than the maximum excess delay T T ; 

therefore successive data pulses will interfere with each other.  This is called channel-

induced inter-symbol interference (ISI). 

m S>

DB

In a frequency non-selective channel, the transmitted signal’s bandwidth W  is 

smaller than , (i.e., 

S

COHB COH SB W> ).  Therefore the channel affects all spectral 

components of the signal equally.  In the time domain, this means that all the symbol 

multipath components arrive within the symbol duration T .  Consequently there is 

no channel induced ISI. 

m T< S

In the shallow water underwater communications channel, T  can vary greatly but 

values in the order of ten milliseconds are not untypical [9].  This means that at chipping 

rates associated with the DSSS implementation in Seaweb (2400 chips per second), 

channel-induced ISI will occur.  Later in Chapter III we will see that DSSS systems are 

particularly useful in rejecting interference, which includes channel-induced ISI.  As a 

result, the experimental Seaweb modem will deal effectively with a frequency selective 

channel, given sufficient SNR.   

m

 

2. Doppler Spreading  

The delay spread and coherence bandwidth characterize the time dispersive 

properties of the channel but do not address its time-varying nature.  If the channel was 

stationary and there was no motion in the transmitter and receiver, the channel would 

appear time invariant.  The time variance is a result of the motion within the channel, 

specifically movement of the source, the receiver or the channel itself.  This results in 

propagation paths that are different from moment to moment; therefore, the channel 

impulse responses varies over time.  The parameters used to describe the channel’s time-

varying nature are its Doppler spread and coherence time.  Doppler spread is a 

measure of the spectral broadening of the signal caused by the channel’s rate of change 

and is the range of frequencies over which the Doppler spectrum is essentially non-zero.  
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The coherence time T  of the channel is a statistical measure of the time duration 

during which the channel impulse response is essentially time-invariant.  Doppler spread 

and coherence time are related by T .  Sea surface roughness and source 

receiver motion are the dominant mechanisms resulting in Doppler spread [10].   If 

source and receiver are fixed, then the Doppler spread due to wind driven weather effects 

at the sea surface can be expressed as: 

COH

1/COH D≈

4π2 1 ff = +

wf =

0θ

3/ 2w

COH >

B T

B

 0 0cosθ
D wB

c



 (2.9) wh

where wf  is the wave frequency given by 2 / w ,  is the wind speed in m/s, w 0f  is 

the carrier frequency,  is the angle of incidence and  is the wave height of the 

surface waves given by  [10].  Again 

wh

0.005wh = DB  can vary greatly, but without a 

moving source or receiver and in relatively low sea states, Doppler spreads of less than 

10 Hz are not untypical. 

A Doppler spread channel can be characterized as either slow fading or fast 

fading.  In a slow fading channel, the symbol duration is less than the coherence time 

; therefore, the channel is essentially time invariant over the duration of the 

symbol.  In a fast fading channel, the channel’s characteristics (i.e., impulse response) 

changes faster than the symbol duration, T .  A slow fading channel is more 

desirable from a detection perspective, so symbol rates can be increased to meet this 

requirement, as long as there is a way to compensate for the channel-induced ISI that may 

result.   

COH ST >

S

T

T

 

3. Doubly Spread Channels 

Any channel, such as the shallow water communications channel, that undergoes 

both time and Doppler spread is said to be doubly spread.  The product of D MB T  is called 

the spread factor.  If , then the channel is said to be underspread and if  

it is overspread.  In underspread channels the channel impulse response can be 

1D M < 1D MB T >
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determined reliably and used to aid the receiver in demodulating the signal.  In an 

overspread channel this is not possible and high data error rates occur.  In the underwater 

acoustic channel, a spread of less than 10-3 is needed for coherent or differentially 

coherent detection [11].   

In this chapter we have seen that the underwater acoustic channel imposes 

significant difficulties on communication signals.  The channel is severely bandlimited, 

ocean noise in non-Gaussian and severe fading occurs due to both time spreading and 

Doppler spreading of the transmitted signal.  In the next chapter, we will see that direct-

sequence spread-spectrum modulation will help compensate for the multipath channel 

effects and provide the low probability of detection that Seaweb requires. 
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III. DIRECT-SEQUENCE SPREAD-SPECTRUM (DSSS) SYSTEMS 

This chapter describes the key aspects of DSSS systems.  First we explain the 

general advantages of using spread-spectrum communication techniques.  Then we 

examine how these advantages are realized in DSSS.  An overall block diagram of a 

DSSS system that uses quadrature spreading of a DBPSK signal is developed, with 

detailed explanations on how the individual blocks are implemented in practical systems.  

These blocks include the pseudo-random code generator, the modulator and demodulator 

and the channel coder.  Finally, methods of compensating for the multipath channel 

effects are discussed.   

 

A. DIRECT-SEQUENCE SPREAD-SPECTRUM OVERVIEW 

 

1. Benefits of Spread-Spectrum Techniques 

Spread-spectrum (SS) transmissions of digital communication signals are widely 

used in wireless and military applications because they are very effective at suppressing 

interference.  This interference can occur from several sources.  One source could be an 

adversary deliberately jamming the communications channel.  Another source is the 

result of multiple access techniques in which many users simultaneously share the same 

transmission bandwidth thereby interfering with each other.  Code Division Multiple 

Access (CDMA) in a cellular communication system is one example of this.  Lastly, the 

interference may be the result of channel-induced ISI due to multipath arrivals in a band-

limited channel. 

Spread-spectrum techniques can also be used to hide a signal by transmitting it at 

low power.  By spreading the signal energy over the widest available bandwidth and 

using the minimum power needed, the signal can be hidden in the channel noise.  This 

means that any unauthorized interceptor will have a low probability of detecting the 

signal relative to the intended receiver.  Likewise because of the pseudo-random 

properties of the spreading sequence, even if the signal is detected a lower probability of 
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it being intercepted exists.  As a result, spread-spectrum signals are called low probability 

of detection (LPD) and low probability of intercept (LPI) signals. 

There are three primary motivations for implementing spread-spectrum in 

Seaweb.  First is to reduce the effects of channel-induced ISI in the severely band-limited 

underwater channel, second is to allow for multiple users in an undersea network and 

finally we want to transmit LPD and LPI signals so that the network can operate covertly. 

To be considered a spread-spectrum technique, a transmission must have two 

characteristics:  First, the transmission bandwidth of the signal must be much larger than 

the minimum bandwidth associated with the information data rate W .  The second 

requirement is that the signal’s bandwidth must be spread by using a spreading signal or 

code that is independent of the data.  This code has pseudo-random properties, which 

allows the receiver to know a priori what the code is.  Demodulation is then 

accomplished by correlating the received code with a synchronized replica in the receiver 

and thereby despreading the signal. 

R�

There are two basic methods for implementing spread-spectrum:  DSSS involves 

spreading using phase modulation, FHSS involves rapidly changing the carrier frequency.  

A basic block diagram of a spread-spectrum system is seen in Figure 7.  Only DSSS is 

examined in this thesis. 

 
Figure 7.   Block diagram of a Spread-Spectrum digital communication system [From 

Ref. 12]. 
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2. Direct-Sequence Spread-Spectrum 

In DSSS the spreading of the signal bandwidth occurs at baseband by multiplying 

the baseband data pulses with a chipping sequence.  This chipping sequence is a pseudo-

random binary waveform with a pulse duration of T  and a chipping rate of C 1/C CR T= .  

Each pulse is called a chip and T  is the chip interval.  For a given information symbol of 

duration T  and a symbol rate of 

C

S 1/S SR T= , the duration of each chip is much less than 

the pulse length of the information symbol (i.e., T ) and C � ST CR  is much higher than the 

symbol rate (i.e., C SR R� ).  In practical systems, the number of chips per symbol  

must be an integer number with the transition of the data symbols and the chips occurring 

at the same time.  The ratio of chips to symbols is called the spreading gain k  or 

bandwidth expansion factor 

CN

eB  where: 

 S C
e C

C S

T Rk B N
T R

= = = =  

A PN code has a fixed-length of  chips and can be classified as either long or 

short.  In a short code the entire chip sequence is transmitted within every data bit.  In a 

long code only a portion of the sequence is transmitted within each data bit and typically 

.  The chipping sequence and the data sequence are combined by modulo-2 

summing the binary sequences or by multiplying the two pulsed waveforms.  The 

relationship between chips and symbols and the resulting spread data sequence is seen in 

Figure 8.   

N

/ CN N �1

 19 



t

t

c(t)

d(t)

d(t)c(t)

Tb

Tc

t

Tb

PN Signal

Data Signal

Combined Signal

t

t

c(t)

d(t)

d(t)c(t)

Tb

Tc

t

Tb

PN Signal

Data Signal

Combined Signal  
Figure 8.   The relationship between the spreading sequence c(t) and the information 

sequence d(t) for a DSSS signal with six chips per bit. 

 

The chip duration is chosen in order to spread the signal over the maximum 

available bandwidth of the channel.  A rectangular pulse  of length T  has a null-to-

null bandwidth 

( )g t ,

2 /nnB T= .  Therefore for a channel bandwidth W , T W  or 

, meaning that the chip rate should be half the available channel bandwidth.  

Higher chipping rates, approaching the bandwidth (i.e., W R ) are possible 

using more sophisticated techniques like root-raised cosine pulse-shaping of the data 

waveform, but these are not addressed here.  Despreading of the DSSS signal in the 

receiver is accomplished by again multiplying the signal by the same PN sequence. 

2 /=

W

C

<

/ 2CR W=

/ 2 C<

 

3. Interference Suppression 

We can now examine how spreading the signal bandwidth helps suppress 

interference.  To simplify the description, consider only baseband communication and 

wideband interference, which is consistent with barrage noise jamming, multi-user 

applications or multipath arrivals. 
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As seen in the block diagram in Figure 9, multiplication with the PN sequence in 

the transmitter spreads the data signal over the entire bandwidth.  At the receiver, 

multiplication with the same PN sequence gives a selective despreading of the data 

signal.  Yet the interference signal is not despread since it is uncorrelated with the PN 

sequence and continues to occupy the entire bandwidth.  This increases the received 

signal-to-noise ratio over the no-spreading case.  
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Figure 9.   Effects of wideband interference on DSSS signal [After Ref. 13]. 

 

If the signal were not spread, then the interference would still occupy the same 

bandwidth as the transmitted signal and would severely degrade performance.  This is 

illustrated in Figure 10. 
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Figure 10.   Effects of wideband interference on a BPSK signal without spreading. 

 

Figure 11 shows the case of no interference and only additive white Gaussian 

noise (AWGN).  In this case DSSS offers no advantage.  The SNR of the output data 

signal is the same whether spreading is implemented or not.  This is because the noise 

remains uniform across the entire spectrum even after despreading. 
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Figure 11.   Effects of AWGN on a DSSS signal [After Ref. 13]. 



B. PSEUDO-RANDOM NOISE (PN) SPREADING SEQUENCES 

The chipping waveform c t  is modeled as a zero mean, polar random binary 

wave, in that it can assume the state (+1 or –1) with equal probability.  Since each c t  

has a duration of T  seconds, an infinite length sequence has an autocorrelation function 

given in Figure 12. 

( )

( )

C

-TC +TC
τ

CR (τ)

-TC +TC
τ

CR (τ)

 
Figure 12.   The correlation function for a polar random binary wave. 

 

In practice  must be finite and deterministic because the receiver must know 

the sequence a priori in order to produce a replica of c t  and to despread the data.  The 

chip sequence is generated from a pseudo-random noise (PN) sequence generator, which 

should have the same autocorrelation as a polar random binary wave. 

( )c t

( )

 

1. Maximal Length Sequences 

The most common method of generating the PN code is using a series of -shift 

registers.  Depending on the specific implementation, the output of each shift register 

may or may not be fed back to the input through an exclusive-OR (XOR) operator.  If the 

feedback is designed correctly, the output of the shift registers will produce a binary 

series in which the output will cycle through the maximum number of states before 

repeating itself.  This particular code is called a maximal length sequence or m-sequence.  

The output taken at any of the shift registers is an m-sequence. Therefore, a family or set 

of m-sequences is generated from any given configuration.  An example of a four-register 

m-sequence generator is seen in Figure 13. 

n
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Figure 13.   A four stage m-sequence generator [From Ref. 14]. 

 

For any given configuration of -stage registers, the length of the m-sequence will be 

 (15 in this example) and a set of  different m-sequences can be generated.  

Because the length of the sequence is odd, there will not be an equal number of ones and 

zeros and an additional one is present.  The configuration of the feedback connections is 

defined by the generator polynomial, which for the above example is: 

n

2nN = −1 n

  (3.1) 4( ) 1 .g D D D= + +

This indicates that the output of the first shift register  and the output  of the 

fourth shift register  are fed back to the input .  The autocorrelation function of an 

m-sequence is seen in Figure 14. 

1D 3a 4D

0a 0D

 

 
Figure 14.   The autocorrelation function for an arbitrary m-sequence [From Ref. 14]. 

 

Although m-sequences have good autocorrelation properties, they can have very 

large cross-correlations.  These poor cross-correlation properties make them unsuitable 

for multi-access applications.  When multi-access codes are required, we want the cross-

correlation of two independent PN sequences to be small.  In this case, Gold codes are 

often used. 
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2. Gold Codes 

In a set of m-sequences of length , some will have “good” cross-correlation 

properties.  These sequences are called “preferred m-sequences.”  A set of new PN 

sequences can then be generated from two preferred m-sequences by modulo-2 summing 

them in a specific manner.  These new sequences will exhibit the same good cross-

correlation properties as the original two preferred m-sequences used to generate them.  

These new sets of PN sequences are called Gold codes.  One example of a Gold code 

generator is seen in Figure 15.  The two m-sequence generators seen here are shown in 

their high-speed implementations rather than as shown in Figure 13 above. 

N

 
Figure 15.   A typical Gold code generator [From Ref. 14]. 

 

Other PN codes like Kasami codes, Hadamard codes, Barker codes and others 

exist and are widely discussed in technical literature but are not addressed here.  

Likewise, only the auto- and cross-correlation properties between full-length sequences 

have been discussed.  In the case in which long codes are used for chipping, only a 

portion of the sequence is used to chip any given bit and therefore partial period cross-

correlation properties are important.  In the experimental Seaweb modem implementation 

long Gold codes are used. 
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C. DIRECT-SEQUENCE DIFERENTIALLY ENCODED BINARY PHASE-
SHIFT KEYING WITH QUADRATURE SPREADING (DS-IQ-DBPSK) 

This section addresses how the chipped data sequence is modulated and 

demodulated using differentially encoded binary phase-shift keying with quadrature 

spreading.  First the general theory behind DBPSK is examined.  Then we examine how 

the signal is spread and modulated using a balanced in-phase and quadrature-phase 

modulator.  Finally we will look at how the DSSS waveform is demodulated at the 

receiver with particular emphasis on using a RAKE receiver for diversity reception.   

 

1. Binary Phase-Shift Keying (BPSK) 

In BPSK, the data sequence modulates the phase of a constant amplitude carrier.  

Typically the two phases are 0o and 180o.  Figure 16 shows a typical BPSK waveform in 

the time domain. 
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Figure 16.   A BPSK signal in the time domain. 
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If the carrier has an amplitude  and the bit duration is T  then the energy per 

bit is 

CA b

21
2b cE A= bT  and the transmitted BPSK signal can be expressed as: 

 

( ) cos(2 ( )) 0

2 cos(2 ( ))

0, 1
, 2

i C c i

b
c i

b

i

s t A f t t t T

E f t t
T

i
i

π θ

π θ

θ
π

= + ≤

= +

=
=  =

b≤

 (3.2) 

 

where cf  is the carrier frequency and  is the phase modulation term.  Since  is 

restricted to 0 or  the above expression can be rewritten as: 

( )i tθ ( )i tθ

π

 

1

2( ) ( ) cos

( ) ( )

b
c

b

b

Es t b t t
T

b t E t

ω=

= Ψ

 (3.3) 

where b t  represents the polar random binary data waveform, ( ) 1= ± 2C cfω π=  and 

1( ) osb ωΨ = 2 / ct T ct .  The signal can also be represented graphically as a vector on a 

polar plot where the axes represent the in-phase and quadrature-phase components of the 

signal.  This plot is called the signal constellation.  The vector’s magnitude is the signal 

amplitude and the direction corresponds to the phase.  The constellation for BPSK is seen 

in Figure 17. 
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Figure 17.   The signal constellation for BPSK. 

 

The frequency domain representation of the BPSK signal can be seen in Figure 18. 
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Figure 18.   A BPSK signal in the frequency domain. 
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BPSK can be coherently or non-coherently demodulated.  Non-coherent detection 

is often used because it has only slightly inferior performance (less than 3 dB) when 

compared to coherent detection, but it does not require elaborate methods of tracking the 

phase of the received signal.  When non-coherent detection is used, the data bits are 

differentially encoded in what is known as Differentially Encoded Binary Phase-Shift 

Keying (DBPSK).   

Whether DBPSK should be considered a non-coherent or coherent detection 

scheme can be confusing.  Most authors [7] call DBPSK a non-coherent technique 

because the phase of the received signal is not tracked continuously.  Some authors [12] 

point out that although DBPSK is a non-coherent scheme, it does involve the assumption 

that the phase is constant over at least two successive bits and consequently can be 

thought of as an extreme case of coherent detection (i.e., a type of semi-coherent 

detection).  But because DBPSK is not an energy detection method but a phase detection 

method, other authors [15] simply define it as differentially coherent.  For our purposes 

DBPSK will be strictly called non-coherent. 

 

2. Differential Encoding 

In DBPSK, the data must be differentially encoded before modulation.  The 

output of the differential encoder is dependant on whether the present symbol is the same 

or different than the previous symbol.  The first bit in the sequence is arbitrarily chosen.  

There are several methods of implementing the coding, for example: 

 ( ) ( 1) ( )d k d k b k= − ⊕  (3.4) 

where ⊕  represents the XOR operation, b k  is the present data bit and  is the 

previous differentially encoded bit.  Table 1 shows an example of this operation for the 

bit stream 1 1 0 1 1.  Although the differential bit sequence will always have an extra bit 

at the start, a DBPSK transmission will, in all other respects, resemble a BPSK 

transmission. 

( ) ( 1)d k −

 29 



sample k 0 1 2 3 4 5
b(k) 1 1 0 1 1
d(k) 1 1 1 0 0 0

0 0 0 πθ ( k ) π π

sample k 0 1 2 3 4 5
b(k) 1 1 0 1 1
d(k) 1 1 1 0 0 0

0 0 0 πθ ( k ) π π  
Table 1.   Generation of the phase angles from the input data sequence for DBPSK. 

 

3. Chipping the DBPSK Signal 

 We now consider how the chipping sequence effects the modulator.  The DBPSK 

transmission can be expressed as: 

  (3.5) ( ) ( ) cosCs t d t A tω= C

where  and represents the differentially encoded polar binary waveform derived 

from the bit sequence .  In Section A.2 we saw that  and d t  had to be 

synchronized so that there are an integer number of chips per bit and the transitions of 

chips and bits had to occur at the same time.  The DSSS signal was spread at baseband by 

multiplying the two signals, with the result: 

( ) 1d t = ±

( )d k ( )c t ( )

 ( ) ( ) ( ) cos .DS Cs t c t d t A tω= C  (3.6) 

The product c t  is just another random polar binary wave but with a pulse 

duration T  and therefore: 

( ) ( ) ( )c t d t′ =

C

 ( ) ( ) cos .DS Cs t c t A tω′= C  (3.7) 

This is equivalent to a BPSK transmission in which the “bit” duration is T . C

 

4. Pulse-shaping 

 When rectangular pulses propagate through a band-limited channel, they are 

spread in time.  This is because the sharp transitions at the edges of the pulse contain the 

high frequency components, which are smoothed by filtering.  This spreading causes 

successive pulses to interfere with each other and also results in poor correlation of the 

signal with its replica in the receiver. 
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These adverse effects can be mitigated by shaping the amplitude of the pulse 

before it is transmitted.  One simple method is a band-limiting filter equal to the 

bandwidth of the channel.  This ensures that the band-limiting distortion at the transmitter 

is known and can therefore be compensated for in the receiver.  Other more sophisticated 

techniques, such as raised root-cosine or Gaussian pulse-shaping filters, can also be used 

for specific applications but are not addressed here.   

 

5. Balanced Quadrature Modulation of the DS DBPSK Signal 

In spread-spectrum applications it is common to send the DBPSK signal over both 

an in-phase (I) and quadrature-phase (Q) channel, as this is known to have better 

performance in some jamming environments.  Yet, more importantly for the Seaweb 

application is that, when different chipping sequences are used for the I and Q channels, 

it will be more difficult for a unauthorized interceptor to detect the signal, as will be 

shown later.  This modulation technique is often called balanced QPSK or quadrature 

spread DBPSK.  In this thesis, balanced QPSK will be referred to as IQ-DBPSK to stress 

the fact that it is a DBPSK signal sent over an I and Q channel.  A block diagram of this 

implementation is seen in Figure 19.   
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Figure 19.   Block diagram for DS-IQ-DBPSK modulator. 
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The DS-IQ-DBPSK signal can be expressed as:  

 1( ) ( )cos[ ( )] ( )sin[ ( )]
2DS IQ BPSK C I C i Q C is t A c t t t c t tω θ ω θ− −  = + − t+

π

 (3.8) 

where  is the phase modulation term which is the same for both the I and Q 

channels, c  and c  are the spreading waveforms used on each channel and the 

( ) 0,i tθ =

( )I t ( )Q t

1/ 2  is a scaling factor so that the signal power is evenly split between the two 

channels. 

 

6. Synchronization of the PN Sequence in the Receiver 

In a DSSS system, it is critical that the receiver’s replica of the spreading code be 

aligned or synchronized with the received signal in order to demodulate it successfully.  

A misalignment of even one chip will result in a loss of the signal.  The process of 

synchronizing the codes is done in two stages.  The first is called “acquisition” and 

involves detecting the presence of the signal and bringing the codes into rough alignment.  

The second step is called “tracking,” which involves fine synchronization between the 

codes.  The codes are kept in alignment by using a feedback control loop called a Delay 

Lock Loop (DLL). 

a. Acquisition 

Several methods exist to acquire DSSS signals and all involve correlating 

the received signal with a replica and comparing the output with a threshold to determine 

if the signal is present and roughly synchronized.  Instead of implementing these typical 

methods found in [7] and [12], our initial Seaweb utility packet design follows the work 

presented in [16].  In this implementation an acquisition frame is added to the start of 

each transmission. 

The frame consists of three short duration PN sequences.  These sequences 

are modulated in the same manner as the data, that is, they are DS-IQ-DBPSK signals.  In 

the receiver these pulses are passed through a filter matched to one of the PN sequences.  

When three correlation peaks of similar amplitude and separation are detected, the signal 
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is determined to be present.  An estimate of the start of the first data bit and first chip is 

determined from the distance between the correlation peaks.  A non-coherent correlator is 

used in this application. 

b. Tracking  

Now that the start of the data has been determined and the signal has been 

coarsely aligned, the DLL is used to perform fine synchronization.  An implementation of 

a non-coherent DLL is seen in Figure 20.   
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Figure 20.   Block diagram of the DLL implementation [After Ref. 16]. 

 

The basic principle behind this is to compare the received PN sequence  to an early 

and late shifted version of the receiver’s replica and to generate an error signal , 

which is proportional to the amount by which the two signals are out of alignment.  This 

error signal is fed back to the PN sequence generator in the receiver, causing it to 

advance or delay by a number of samples proportional to the error.  The goal is to drive 

the error to zero at which point the two sequences will be precisely aligned.  Correlating 

the incoming code with an early and late shifted version of the replica generates the error 

signal.  The two correlator outputs are then subtracted from each other, creating what is 

called an “S-curve,” as seen in Figure 21. 

( )s t

[ ]e n
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Figure 21.   “S-curve” generated by the DLL where τ  is the correlation lag. 

 

If there is no misalignment between the PN codes, the zero crossing of the S-curve will 

occur in the center of the correlation output.  Any misalignment will result in a zero 

crossing that is either left or right of center.  The number of samples that the zero 

crossing is offset is equal to the number of samples that the replica PN sequence must be 

shifted in order to be aligned with the incoming signal.  This process is done continuously 

for each bit.   

One common problem with DLLs is that at low SNRs the error signal will 

experience noise jitter and will be erratic.  A loop filter is therefore used to limit the 

variance of the noise in the error signal.  The loop filter is a lowpass filter whose 

bandwidth must be designed to maximize the performance of the DLL.  Small 

bandwidths result in less jitter but larger bandwidths allow for quicker adjustments to any 

misalignments.   
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7. Demodulation of DS-IQ-DBPSK 

Once the receiver is synchronized with the incoming waveform, there are several 

possible methods of demodulating the DS-IQ-DBPSK signal.  The model chosen for the 

experimental Seaweb modem is seen in Figure 22 and is also called a quadrature 

demodulator. 

+ _

y I(t)
2 cI(t) cos(wct)

r(t)

Quadrature-Phase
Replica Generator

In-Phase
Replica Generator

Tan-1(XQ/XI)

( )
0

1 bT

b

dt
T ∫ i

( )
0

1 bT

b

dt
T ∫ i

XQyQ(t)

2 cQ(t) sin(wct)

XI

ˆ( )kθ

Delay

ˆ( 1)kθ −

ˆ( )kθ∆
ˆ( )

2
kπ θ− ∆ V(k)Signal

Acquisition
+ _

y I(t)
2 cI(t) cos(wct)

r(t)

Quadrature-Phase
Replica Generator

In-Phase
Replica Generator

Tan-1(XQ/XI)

( )
0

1 bT

b

dt
T ∫ i( )

0

1 bT

b

dt
T ∫ i

( )
0

1 bT

b

dt
T ∫ i( )

0

1 bT

b

dt
T ∫ i

XQyQ(t)

2 cQ(t) sin(wct)

XI

ˆ( )kθ

Delay

ˆ( 1)kθ −

ˆ( )kθ∆
ˆ( )

2
kπ θ− ∆ V(k)Signal

Acquisition

 
Figure 22.   Block diagram of a non-coherent DS-IQ-BPSK receiver [After Ref. 12]. 

 

Ignoring the effects of the channel, the received signal will be the same as the 

transmitted signal  given by Equation 3.6 above.  The input to the I-channel 

integrator is given by: 

( )s t

 
( ) 2 ( )cos( ) ( )

2 ( ) cos( ) ( ) cos[ ( )] ( )sin[ ( )]
2

I I C

C
I C I C i Q C i

y t c t t s t
Ac t t c t t t c t t t

ω

ω ω θ ω

=

.θ = + − + 

i
 (3.9) 

The output of the integrator can be expressed as: 

0

1 2 ( ) cos( ) ( ) cos[ ( )] ( )sin[ ( )] .
2

bT
C

I I C I C i Q C i
b

Ax c t t c t t t c t t t dt
T

ω ω θ ω θ = + − ∫ +  (3.10) 

 

 35 



Due to the properties of the PN sequences,  and  and 

Equation 3.10 becomes: 

0
( ) ( ) 1bT

I Ic t c t dt =∫ 0
( ) ( ) 0bT

I Qc t c t dt =∫

 
0

1 2 cos( ) cos[ ( )]
2

bT
C

I C C
b

A .ix t t t
T

ω ω θ= ∫ dt+

π

 (3.11) 

Recall from Equation 3.2 that because  Equation 3.11 can be rewritten as: ( ) 0,i tθ =

 [ ]

0

0

1 2 cos( ) ( ) cos[ ]
2

1 ( ) 1 cos(2 )
2

( ) sin(4 )
42

b

b

T
C

I C
b

T
C

C
b

C C b
b

C bb

A
Cx t d t t dt

T

A d t t dt
T

A d t f TT
f TT

ω ω

ω

π
π

=

= +

 
= + 

 

∫

∫  (3.12) 

where .  Assuming that  and ( ) 1d t = ± 1C bf T � C bf nR=  (both of which are true for the 

experimental Seaweb modem), then Ix  becomes: 

 ( ) .
2
C

I
Ax d t=  (3.13) 

Using exactly the same approach for the Q-channel the output of the integrator is: 

 ( ) .
2
C

Q
Ax d t=  (3.14) 

An estimate of the true phase of the  received differentially encoded bit thk �( )kθ  

can then be determined from the expression: 

 � 1 1 / 2 5( ) tan tan ,
4 4/ 2

Q C

I C

x Ak
x A

π πθ − −    ±= = =    ±   
 (3.15) 

and the magnitude of the  differentially encoded bit is given by: thk

 2 2[ ] .I Qx k x x= +  (3.16) 
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The differential encoding is removed by comparing the phase of the present bit �( )kθ  to 

the phase of the previous bit �( 1kθ − ) , which yields: 

 � � �( ) ( ) ( 1) 0,k k kθ θ θ∆ = − − = π  (3.17) 

where �( )kθ∆  is the phase of the  channel bit.  This can be converted to an output 

voltage V  that is then used as the decision variable to determine the original polar binary 

data sequence  by taking: 

thk

( )b k

 �( )
2

V π θ= − ∆ k  (3.18) 

  (3.19) 
0, if 0

( )
1, if 0.

V
b k

V
<

=  ≥

In the case of soft decision decoding, this decision is not made in the receiver, 

instead the voltage level V  is passed to the soft decision decoder. 

 

8. LPD Properties of DS-IQ-DBPK 

With an understanding of how a DS-IQ-DBPSK signal is generated and detected, 

we can now briefly examine its LPD and LPI properties.  First we define what is meant 

by LPD and LPI, since this definition can differ between references.  The probability of 

detecting a signal is associated with determining if the signal is present of not.  As 

discussed in Section A.1, DSSS is inherently LPD because it can hide the signal below 

the channel noise by spreading its energy over a larger bandwidth.  The probability of 

intercepting a signal is associated with determining its spreading code.  Reference [15] 

defines an LPI signal as a spread-spectrum signal whose code is unknown to the 

interceptor.  Therefore, even if the presence of a DS signal is detected, it may still be LPI.  

Although more sophisticated (and classified) means are available to detect and to 

intercept DSSS signals, a simple method, discussed further here, is to use a square-law 

device. 
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If a DS-BPSK signal is squared, then: 

 

2
2 2 2 2
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2 2
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0

( ) 2 ( ) ( )cos ( )
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=

= +
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= + +

��	�
 +

+

 (3.20) 

Therefore by simply squaring the signal, it can be despread and detected its above the 

noise, as well as determine its carrier frequency.  Also, only one code sequence needs to 

be intercepted. 

 If, however, the transmitted signal uses quadrature spreading and different PN 

codes for the I and Q channels, then: 

  (3.21) 

2 2 2 2 2 2 2 2 2
0 0

1 1
2 2

0 0

2 2 2
0

( ) ( ) ( ) cos ( ) ( ) ( )sin ( )
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C C I Q c

s t A c t d t t A c t d t t

A c t c t d t t t

A A c t c t d t t

ω θ ω θ

ω θ ω θ

ω θ

= =

= + +

− + +

= − +

��	�
 ��	�


Since  and  are different but synchronized, the result is another DS signal with 

the same processing gain but at a carrier frequency of . Therefore a DS-IQ-DBPSK 

signal cannot be detected using a simple square-law device. 

( )Ic t ( )Qc t

2 cω

 

D. RAKE RECEIVER 

It should be intuitive from Chapter II that a receiver’s performance will be poorer 

in fading environments (although this will be proven analytically in Chapter V).  In a 

fading channel, the signal’s energy is spread over several multipath arrivals.  Therefore if 

the receiver only demodulates the first arrival, usually associated with the main path, 

much of the signal energy is lost to the receiver.  Even in the case of SS, in which we can 
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reject the ISI interference caused by these other arrivals, we do not exploit the energy in 

them to improve detection. 

One method to improve performance in fading channels is “diversity reception.”  

Diversity means receiving several versions of the signal.  This can be done using several 

antennas or in our case hydrophones (spatial diversity), transmitting the signal on several 

frequencies (frequency diversity) or repeating the same transmission at different times 

(time diversity).  By summing these diversity receptions, we can improve performance in 

a fading channel.  In the case of multipath, there is inherent time diversity due to the 

multiple arrivals of the signal.  If, as in the case of DSSS, the multipath arrivals are 

separated by time intervals greater than T , then these arrivals will be resolvable and can 

be summed.  A receiver that performs this is called a RAKE.  The RAKE can also be 

thought of as a finite impulse response (FIR) filter, “matched” to the channel impulse 

response. 

C

 In the case of DS-IQ-DBPSK, the RAKE is implemented essentially as a bank of 

demodulators processing successive time delays of the received signal [12].  The 

processing delays are T  seconds apart.  Figure 23 shows a block diagram of this 

implementation. 
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Figure 23.   Block diagram of a RAKE receiver for DS-IQ-DBPSK. 
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Each processing leg of the RAKE is called a “tap.”  The output of each of the  

taps is a voltage level V  and in our case the outputs of all taps are linearly combined 

(i.e., no weighting is used) to give an overall output voltage V .  This can be expressed 

as: 

n

n

T

 
1

.
N

T
n

V V
=

= n∑  (3.22) 

This new output voltage V  is then used as the decision variable to determine the original 

binary data sequence. 

T

  (3.23) 
0, if 0

( )
1, if 0.

T

T

V
b k

V
<

=  ≥

Again, in the case of soft decision decoding, this decision is not made in the receiver and 

the voltage level V  is output to the soft decision decoder. T

Two problems occur with this implementation of the RAKE.  First, if there is no 

signal present in a given tap, the output voltage will be due to noise only.  When this 

noise is added with all the other tap outputs, the SNR will drop and the performance will 

suffer.  This is typically overcome by using a threshold at the outputs of each tap.  If the 

voltage is below the threshold, the voltage is deemed to be noise and the output from that 

tap will be zeroed.  If the output is above the threshold, the voltage is considered to have 

a signal component and it will be summed with the other taps.   

The second problem with this RAKE implementation is that it is unlikely that the 

multipath arrivals will be separated by exactly integer multiples of T .  This means that 

the multipath energy will be spread over two successive taps, which will further degrade 

performance.  This problem can be addressed by adaptively determining the tap locations 

to coincide with the multipath arrivals.  If the channel impulse response can be estimated, 

then these optimal tap positions can be determined.  The estimated channel impulse 

response must be updated at sufficient intervals so that it tracks the changes in the 

channel. 

C

 40 



E. CHANNEL CODING 

 

1. Overview of Channel Coding 

The purpose of channel coding is to detect, to correct and to limit errors caused by 

noise and fading in the channel.  This improved performance typically comes at the 

expense of computational load and or bandwidth and involves adding redundancy to the 

data.  A trivial example would be to send a data bit repeated three times, i.e., a 1 would 

become 1 1 1.  The receiver would then do a majority vote on the three coded bits to 

determine the actual bit sent.  For example, if a 1 0 1 sequence were received, the 

receiver would interpret that as a 1.  Therefore, in this case we can tolerate one in every 

three bits being in error. 

In this simple example, we can see that the improved performance comes at the 

expense of a larger bandwidth since the coded bits must be sent three times as fast.  

Channel coding is a rich field of research with many different coding algorithms 

available.  We will restrict our discussion to two techniques, convolutional encoding and 

block interleaving.  Convolutional coding is a forward error-correction (FEC) code 

technique in which errors are detected and corrected.  Block interleaving is a method of 

sequencing the data to limit the effects of channel burst errors. 

Other candidate schemes like block-coding or turbo-coding do not meet the 

immediate requirements for Seaweb utility packets.  Block codes in general do not 

perform as well as convolutional codes and turbo codes need long bit sequences, which 

are not possible because the Seaweb utility packets are short fixed-length (72-bit ) 

sequences. 

 

2. Convolutional Coding 

A convolutional encoder is composed of  sets of -length shift registers whose 

outputs are selectively modulo-2 summed by  adders.  An example of an encoder with 

and  and  is seen in Figure 11. 

k K

n

1k = 3K = 2n =
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Figure 24.   , , n  convolutional encoder [From Ref. 7]. 1k = 3K = 2=

 

The output of this encoder will have 2 coded bits for every input data bit.  Three 

parameters characterize a convolutional encoder.  First the coding rate r  given by: 

 .kr
n

=  (3.24) 

In other words,  expresses the decrease in the information rate.  The next is its 

constraint length, which is usually defined as the length of the shift registers  [7, 12].  

The last parameter is its free distance , which is a measure of the code’s performance 

and will addressed further in Chapter V.  The above example is therefore a ½-rate 

convolutional encoder of constraint length 3.  As the encoder configurations become very 

large, being able to indicate how the registers and modulo-2 summers are connected is 

very important.  This is done by defining a connection vector.  In the above example, the 

connection vector would be: 

r

K

freed

  (3.25) 1 2111 101.g g= =

This indicates that the first code symbol is generated by connecting the outputs of all 

three shift registers, while the second code symbol is generated by connecting only the 

first and third registers.  These code vectors are often combined and expressed in their 

octal form.  For example, the above code vector would become .  Optimal 

configurations have been developed for a variety of code rates and constraint lengths and 

are available from several references [7, 12, 17]. 

[7,5]g =

One point that impacts the practical implementation of a convolutional encoder is 

that the number of coded bits will be more than just  times the number of input bits.  r
 42 



This is because we also need to add “flush bits” to the input so that the last data bit will 

be pushed all the way through the shift registers.  This means that the number of channel 

bits will be: 

  (3.26) number of channel bits ( 1)input bitsr N K= × + − 

In the case of Seaweb in which the utility packets are only 72 bits, the total number of 

coded channel bits, for a ½-rate constraint length 9 coder, is  bits. 2(72 8) 160+ =

 To better understand how the convolutional decoder works, seeing what the 

output of the encoder looks like is important.  Using the encoder described above and for 

an input bit stream 1 1 0 1 1, the output of the decoder is seen in Table 2 below.  The 

state is defined as the value of the last  (2 in this example) shift registers.  It is 

assumed that the registers are initialized to 000. 

1K −

i input bit at ti registers at ti state at ti output at ti
1 1 100 00 11
2 1 110 10 01
3 0 010 11 01
4 1 101 01 01
5 1 110 10 01  

Table 2.   Register contents, states and output code words for a given set of inputs, 
using the convolutional coder in Figure 24 above [After Ref. 7]. 

 

The relationship between inputs, states and outputs shown in Table 2 above can 

also be shown graphically as a path through a trellis diagram seen in Figure 25.  The 

trellis shows all possible states and code words for a given series of inputs.  The states are 

indicated by the letters “a” through “d” and the input bit is indicated by either a dashed or 

a solid line and the output code word is given by the two-bit word indicated on the 

codeword branch.   
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Figure 25.   The trellis diagram for a , k , n  convolutional encoder       

[From Ref. 7]. 
3K = 1= 2=

 

To explain the trellis diagram we start at time t .  The state at  is = 00.  If a 1 

were input, the state would transition, along the dashed line, to = 10 and the code word 

would be 11.  If a 0 were input, the state at t  would remain at = 00 and the output code 

word would be 00.  From Table 1 above, we see that the first input is a 1; therefore, the 

output is 11 and the new state is b = 10.  This same process can be performed for all input 

bits as they cycle through the encoder. 

1 1t a

b

a2

 

3. Hard and Soft Decision Decoding 

Once the coded sequence has passed through the channel, it must be decoded.  

This is performed by comparing what the received data sequence is, to what it should be, 

as predicted by the decoder.  Several algorithms exist to do this decoding.  One of the 

most common methods in the technical literature is the Viterbi algorithm, which can be 

used for both hard decision decoding (HDD) and soft decision decoding (SDD). 

In HDD the input to the decoder is either a 1 or 0.  This decision is made at the 

output of the demodulator.  For example, in the case of a binary modulation schemes (i.e., 

BPSK) a negative voltage at the output of the demodulator, whether small or large, would 
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be detected as a zero.  In the case of SDD, the demodulator does not make the decision.  

Instead the output voltage is quantized into  levels and represented by n  bits and sent 

through the soft decision decoder.  We will restrict ourselves to describing HDD.  For 

further information on SDD, the interested reader is directed to references such as, [7, 12, 

18] which give in-depth information and analysis of both coding schemes and their 

variants. 

2n

Providing an example is the easiest way to explain how HDD works.  Using the 

same encoding example from Section 2 above, the top of Figure 26 shows the input data 

sequence, the transmitted code word and one possible received sequence where the fourth 

received code word is in error.   

 
Figure 26.   The trellis diagram for a , k , n  convolutional decoder using 

HDD [From Ref. 7]. 
3K = 1= 3=

 

The Viterbi algorithm finds a path through the trellis that the original coder “most 

likely” took.  In HDD, “most likely” means the path with the smallest cumulative 

Hamming distance.  The Hamming distance between two code words is the number of 

positions in which they differ. 

Starting at , we note that if a 1 was sent, the received sequence should be 11, 

which it is; therefore, the Hamming distance between 11 and 11 is 0.  This difference is 

1t
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noted on the branch as the branch metric.  If instead a 0 had been sent, the received word 

should have been 00, it was 11; therefore, the Hamming distance between 00 and 11 is 2, 

which is also on the branch.  This same procedure is carried on through the trellis with 

the Hamming distance marked on each branch.  The cumulative Hamming distance for all 

paths is found and the surviving path with the smallest cumulative Hamming distance is 

chosen.  In fact the Viterbi algorithm does not calculate the cumulative Hamming 

distance for all paths but will drop paths along the way, thus decreasing the 

computational load and preventing the problem of several paths having the same sum at 

the end.  In the above case, the “most likely” path is highlighted in gray and has a 

cumulative sum of 1.  The correct decoded output can then be determined by tracing back 

along the winning path using the convention that a 1 is represented by a dashed line and a 

0 by a solid line.  The decoded output for the above example is therefore 1 1 0 1 1. 

As previously mentioned, the approach for SDD is slightly different, but it still 

uses the principle of finding the most likely path through the decoding trellis.  Although 

SDD has typically 2 to 3 dB better performance than HDD, it is more computationally 

expensive. 

 

4. Block Interleaving 

Convolutional codes are designed to correct random independent errors.  Errors 

that result from channel interference (whether it is channel-induced ISI due to multipath 

fading or hostile jamming) are not random and often occur in bursts.  Likewise, errors in 

DBPSK occur in pairs, which also are not random.  Convolutional coders do not perform 

well with these non-random errors.  Therefore a block interleaver is used in most 

communication systems to help randomize these errors. 

A block interleaver shuffles the convolutionally encoded bits so that successive 

bits are separated from each other.  This is performed by reading the encoded bits into 

rows of an ( ) ( )M rows N cols×  matrix and then reading the data out column by column.  

In the receiver, the output of the demodulator is de-interleaved by reading the data in by 

columns and out by rows.  This ensures that each input bit is separated by a distance of 
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N  bit periods from adjacent bits before entering the channel.  Therefore, channel burst 

errors of up to  bits long will appear as random single bit errors at the input of the 

convolutional decoder.  The effects of the block interleaving are seen in Figure 27.   
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Figure 27.   The effects of block interleaving (channel errors are indicated by an X). 

 

F. PERFORMANCE ANALYSIS OF COMMUNICATIONS SYSTEMS 

In general, when discussing the performance of signal processing methods, the 

commonly used figure of merit is the average signal power to average noise power ratio, 

 or SNR.  In digital communications, it is more common to use  as the figure 

of merit where  is the energy per bit and  is the noise power spectral density.  

These two ratios are related by: 

N 0/bE N

0N

 
0 /
b b

b

E S T S W
N N W N R

= =  (3.27) 

where W  is the channel bandwidth and 1/b bR T=  is the bit rate.  Therefore  is just 

a normalized version of SNR, normalized by the signal bit rate and bandwidth. 

0/bE N
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The most important metric used in comparing the performance of different digital 

communication methods and receiver processing algorithms is the probability of bit error 

 as a function of .  Theoretical expressions for  versus  are widely 

available in the technical literature for all modulation schemes and processing techniques 

used in this thesis. 

bP 0/bE N bP 0/bE N

In practice, Monte Carlo simulations are performed to estimate  for a specific 

modem design.  This involves sending random data bits through the simulated system and 

measuring the number of bit errors generated at the receiver output.  The bit errors are 

determined by comparing the output decoded data sequence with the original information 

sequence over many packets.  The bit error rate (BER) is then found using the expression: 

bP

 total bits inerrorBER
total bits

=  

The BER should correspond well with the expected  from theory as long as sufficient 

statistics are used.   

bP

In this chapter, we have presented the reasons for choosing DS-IQ-DBSK as the 

modulation scheme for the experimental Seaweb modem.  Also, overall block diagrams 

for generating and detecting DS-IQ-DBSK signals were developed.  In the next chapter 

we will present the specific design parameters used by the modem to meet the Seaweb 

design requirements. 
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IV. MATLAB IMPLEMENTATION OF THE SEAWEB 
TRANSMITTER AND RECEIVER 

This chapter presents the MATLAB implementation of the experimental Seaweb 

modem design, discussed in Chapter III.  Block diagrams of the transmitter and receiver 

structures were shown in Figures 19 though 23.  Each block is discussed separately here, 

with particular emphasis on the specific parameters used in the design.  A software flow 

diagram as well as a description of MATLAB code is presented in Appendix A as a 

user’s manual.  Also, a full copy of the source code is included in Appendix B. 

First we recap the Seaweb design requirements.  The modem is required to send 

72-bit utility packets using DSSS.  It must have a maximum bandwidth of 5 kHz with a 

center frequency near 12 kHz.  A ½-rate convolutional coder of constraint length 9 is 

implemented using soft decision decoding and 4-bit quantization.  The bit rates can be in 

the tens of bits per second and minimal complexity is desired so the system can be 

implemented on a Digital Signal Processing (DSP) chip operating at an energy-

conserving power state. 

 

A. TRANSMITTER 

The DS-IQ-DBPSK signal is generated using the block diagram seen in Figure 19 

developed in Chapter III.  The 72 information bits in the utility packet are channel 

encoded, differentially encoded and then passed through both an I and Q channel where 

they are chipped, pulse shaped and modulated.  The two channel outputs are summed 

together to form one data frame and an acquisition frame is then appended to the start of 

the data frame.  The resulting signal is sent through the simulated channel. 

 

1. Channel Coding 

Channel coding is performed using both a convolutional coder and block 

interleaver as described in Chapter III.  A rate ½-code with constraint length 9 is used, 
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which transforms the 72 information bits in the utility packet into 160 channel bits.  An 

optimal code connection vector [753, 561] was taken from [17]. 

Both hard and soft decision Viterbi decoding are performed on the received data.  

Since the Seaweb specification allows for a 4-bit word,  quantization levels are 

used over an interval of [ .  MATLAB’s communications tool box functions are 

used to perform the coding and decoding functions. 

42 1= 6

, ]π π−

Since there are 160 channel bits, the block interleaver matrix is 16 .  This 

means that at the output of the interleaver, the input bits are separated by ten bits. The 

160-bit sequence is differentially encoded resulting in 161 channel bits.  The encoded 

sequence is then passed through an I and Q channel. 

10×

 

2. Modulation 

Two different 2047 length Gold codes are used as the PN sequences to chip the 

data, one for the in-phase and the other for the quadrature-phase channel.  These codes 

are taken from work done by [19] and the actual sequences were downloaded directly 

from his web site.  Since the bandwidth of operation for Seaweb is only W , the 

maximum T  is found to be: T W .  This is equal to 

a chipping rate  chips per second (cps). 

5 kHz=

C 2 / 2 / 5 kHz 0.0004 s 0.4 msC = = = =

25001/C CR T= =

In the actual implementation, however, a lower chipping rate is used to provide 

more flexibility in the channel encoded bit rates that could be implemented.  At 2500 cps 

only bit rates 10, 50 and 100 bits per second (bps) allow for an integer number of chips 

per bit.  However, 2400 cps bit rates of 10, 20, 30, 40, 50, 60, 80 and 100 can be used.  

Simulation results for a channel encoded bit rate of 40 bits per second (i.e., an 

information bit rate of 18 bits per second) are presented in Chapter V.  An  

is equal to a null-to-null bandwidth  and a chip duration of T .   

2400 cpsCR =

0.417 msC =4800 HznnB =
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After chipping the data, the signal is up-sampled to a sampling frequency 

48Sf kHz= .  This exceeds the required Nyquist rate of: 

 max2 2( ) 2(12 kHz 2.4 kHz) 28.8 kHz
2
C

Nyquest c
Rf f f= = + = + =  (4.1) 

At this sampling rate and for a bit rate of 40 bits per second, there are 20 samples per chip 

and 800 samples per bit. 

The output of the up-sampled signal is passed through the pulse-shaping filter.  

This is a digital lowpass FIR filter of order n  and is based on a weighted equi-ripple 

filter design.  The pass-band frequency is  and the stop band is 

.  The low filter order is chosen so that it can be more easily 

implemented in hardware.  The magnitude response of the filter is seen in Figure 28.   

64=

passbandf 2.5 kHz=

3 kHzstopbandf =
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Figure 28.   Magnitude response of the pulse-shaping filter. 
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The resulting effect, in the frequency domain, on the chipped data signal, is 

shown in Figure 29.   
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Figure 29.   Effect of the pulse-shaping filter on the frequency-domain magnitude 
response of the transmitted signal, where the upper plot represents the 

unfiltered signal and the lower plot represents the filtered signal. 

 

The output of the pulse-shaping filter is modulated by both an in-phase and 

quadrature-phase carrier, as detailed in Chapter III.  The carriers have a center frequency 

of  and amplitude .  The two channels are then summed to generate 

one signal.   

12 kHzCf = 1CA =

At this point in the simulation, the signal power  is determined from the 

expression: 

S

 
2 2[ ] [ ]s

s

x n T x n
S

LT L
= =∑ ∑  (4.2) 
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where [ ]x n  is the amplitude of each of the samples in the modulated signal and  is the 

total number of samples.  Without pulse-shaping , but with pulse-

shaping this is no longer true.  Instead it is observed from the simulation that .  

This is consistent with the frequency domain observations in Figure 29.  The power 

contained in the main lobe of a sinc function is 90.3 percent of the total signal power.  

Since the pulse-shaping filter has a bandwidth just a little wider than the null-to-null 

bandwidth of the signal, the filter will pass just over 90.3 percent of the power. 

L

�

2 / 2 1/ 2CS A= =

0.455S

 

3. Acquisition Frame 

 After modulation, an acquisition frame described in Chapter III.C.6.a is appended 

to the start of the data packet.  This frame is used to later acquire the signal in the 

receiver.  The three pulses are 240 chips long and are separated by a period of 200 chips.  

The chipping sequence used is the same as the one used to chip the data.  The total length 

of the frame is therefore 1320 chips, 26400 samples or 0.55 seconds. 

A representation of the overall transmitted signal is seen in Figure 30. 

 53 



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1.5

−1

−0.5

0

0.5

1

1.5

Time in seconds

A
m

pl
itu

de

Acquisition
  Frame

Data
Frame

 
Figure 30.   Transmitted signal in the time domain showing the acquisition and data frame 

components in the utility packet for bit rate of 40 bps. 

 

B. CHANNEL MODELS 

Two channel models were implemented.  The first is an ideal AWGN channel and 

was chosen in order to compare the simulation results to well-known theoretical 

performance of a DS-IQ-DBPSK signal.  The second channel is generated using an 

underwater acoustic propagation model.  Doppler spreading is not considered in any of 

the channels and only AWGN is simulated.  There is no simulation of non-Gaussian sea 

noise. 

 

1. Ideal AWGN Channel 

The AWGN channel is ideal in the sense that there is no multipath spread and 

only noise is added to the signal.  The received signal  (i.e., the input signal to the  ( )r t
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receiver) can therefore be expressed as: 

  (4.3) ( ) ( ) ( ).AWGNr t s t n t= +

In the simulation, the noise to be added to the signal is defined by the user and, for the 

purposes of our analysis, is called .  The noise power  that must then be 

added to the signal to generate this specified , can be calculated from the 

expression: 

0/b desiredE N

b

2σ ,

0/E N

 2 0σ
2 S

NN
T

= =  (4.4) 

where T  is the sampling period.  From: S

 0
0/
b

b desir

EN
E N

=
ed

 (4.5) 

and from Equation 3.2: 

 
2

2
C

b b
AE T S= = bT  (4.6) 

where  is the signal power determined from Equation 4.2, the noise power spectral 

density is obtained from 

S

 0
0

.
/

b

b desire

S TN
E N

=
d

 (4.7) 

The noise power to be added to the signal is then determined using Equation 4.4 above. 

As an example, for a bit rate of  and a desired  

the signal power in the data frame portion of the signal as returned by the simulation is 

.  Therefore  from Equation 4.7 above is: 

40bpsbR = 0( / ) 0 dBb desiredE N =

0.455S � 0N

 0 0
10

10.455
40 0.011375

10
N

×
= =  (4.8) 
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and the noise power σ , from Equation 4.4 above is therefore: 2

 2 0.011375 273.
2 (1/ 48000)

σ = =  (4.9) 

The SNR in this case becomes: 

 2

0.0455 0.00167 27.8 dB.
273

S S
N σ

= = = = −  (4.10) 

If the bit rate were halved, then T  would be doubled and the resulting SNR 

would decrease by 3 dB for the same defined .  This demonstrates two 

principles of DSSS discussed in Chapter II.  First, for a fixed chipping rate, slower bit 

rates will have more processing gain.  Second, this higher processing gain means that a 

lower SNR can be used and will better hide the signal in the channel noise.  Table 3 

below summarizes the relationships for various bit rates. 

b

0/b desiredE N

bit rate        
(bps)

chips per bit 
(cps)

SNR          
(dB)

20 120 -31.8
40 60 -27.8
80 30 -24.8  

Table 3.   Relationships between channel encoded bit rates, chip rates and SNR for a 
DSSS signal with a sampling rate of 48 kHz, chip rate of 2400 cps,             

and . 0/ 0 dbE N = B

 

2. Modeled Multipath Channel 

The second channel model is a multipath channel whose impulse response is 

generated using the Bellhop underwater acoustic propagation model [20].  Bellhop is a 

Gaussian ray model which, according to [10] and [2], are the class models best suited for 

broadband communication signals.  The details of the model are not addressed here but 

the interested reader can find more information on Bellhop, including a users’ manual, at 

[20].  Gaussian ray acoustic propagation models are also discussed in detail in [4]. 
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Bellhop requires an input file that describes the physics of the channel.  This 

includes the channel depth and depths of the transmitter and receiver.  A sound speed 

profile of the water column also needs to be defined as this determines the refractive 

properties of the underwater channel.  The specific input file used represents a real 

channel observed on May 10, 2002 in waters off San Diego, California, while conducting 

underwater communications experiments.  The input file is shown in Figure 31. 
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Figure 31.   Input file for Bellhop, which describes the channel dimensions and physics. 

 

The other parameters listed in the input file define the number of beams used in 

computing the channel response and the output range and depth resolutions.  In addition, 

the sea bottom boundary layer properties are also defined. 
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The model generates the channel impulse response shown in Figure 32.  This 

response is simplified to a series of delta-functions occurring at time intervals 

corresponding to the peaks in the impulse response and is shown in Figure 33. 

 

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time in seconds

M
ag

ni
tu

de

Normalized so that h[0] = 1

Figure 32.   Normalized impulse response for modeled channel generated by Bellhop for 
a range of 4.0 kilometers between source and receiver . 

 

We can see that this is a very challenging channel.  First there are many multipath 

arrivals and the time spread is almost 100 milliseconds.  However, most of the energy 

arrives within the first 15 milliseconds.  Another observation is that all arrivals are more 

than T  seconds apart and are therefore resolvable.   C
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Figure 33.   Simplified impulse response for modeled channel normalized to ensure 

energy conservation in the channel. 

 

The simplified response in Figure 33 is used as the  for the channel 

simulation.  It is also important to note that the impulse response must be normalized 

such that  [12].  This is done to ensure that the channel does not add or 

remove energy by artificially amplifying or attenuating the signal.  AWGN is added in 

the same manner as the AWGN channel.  The output of the channel is determined by 

convolving the transmitted signal with the channel impulse response and the received 

signal is given by: 

( )h t

2[ ] 1h n =∑

  (4.11) ( ) ( ) ( ) ( ).AWGNr t h t s t n t= ⊗ +
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C. RECEIVER 

A DS-IQ-DBPSK receiver was implemented using the block diagrams developed 

in Figures 20, 22 and 23 of Chapter III. 

Acquisition is achieved using a matched filter to detect the three short PN 

sequence acquisition frame described in Chapter III.C.6.a.  The matched filter output for 

an ideal channel (i.e., no noise or multipath) is seen in Figure 34. 
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Figure 34.   Acquisition frame and the Matched Filter output for an ideal channel                    
(i.e., no noise, no multipath). 

 

The start of the data frame is determined from the average distance between the 

correlation peaks in Figure 34. 

The non-coherent DLL is implemented as detailed in Chapter III.C.6.b.  The early 

and late delays are kept as .  Consequently, any misalignments of more than half a / 2CT±

 60 



chip (or 10 samples) will result in a loss of track and a loss of the signal.  The loop filter 

is implemented as weighted averaging of the present shift  with the previous shift 

 as given by: 

[ ]s n

1]s n −

[ 1s n −

a

10= −

]

  (4.12) [ ] (1 ) [ ] [filtereds n a s n a= − ⋅ + ⋅

where  is the weighting factor.  A weighting factor of 0.9 is used in the simulations.  A 

plot of the S-curve for the implemented DLL is shown in Figure 35. 
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Figure 35.   S-Curve of the DLL for an ideal AWGN channel (this example is for an 
) 0/ 18dB ( dB)bE N SNR �

 

After achieving synchronization, the received signal is demodulated using the DS-

IQ-DBPSK receiver seen in Figure 21 of Chapter III.  A typical signal constellation at the 

output of the receiver, but before differential decoding, is shown in Figure 36.   
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Figure 36.   Typical received signal constellation, after despreading and before 

differential decoding. in the ideal AWGN channel (this example is for an 
). 0/ 18dB ( 10dB)bE N SNR= −�

 

The RAKE portion of the receiver is implemented using both a fixed-tap and 

adaptive tap design as discussed in Chapter III.D.  In the fixed-tap case, thirty taps are 

implemented and spaced at fixed intervals of T  or 20 samples apart.  This is sufficient to 

process the first 12.5 ms of multipath arrivals.  The tap thresholds are set at 0.3.  This 

means that, if the main path arrival (i.e., the signal at the first tap) has a magnitude of 

C

,M  

then only those taps that have a signal component greater than 0.3M  are summed 

together.  All other tap outputs are set to zero.  In the case of the adaptive tap 

implementation of the RAKE, the tap locations were artificially supplied to the receiver, 

based on the locations of the first five multipath arrivals.  The demodulated and detected 

bits are compared to the original transmitted information bits to determine the resulting 

bit error rate. 
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In this chapter, we have presented the specific design parameters used in the 

experimental Seaweb modem and the modeled channel characteristics.  In the next 

chapter, we will examine this modem’s performance in both the ideal AWGN channel 

and the modeled underwater channel and compare these to theoretical results. 
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V. THEORETICAL PERFORMANCE AND MONTE CARLO 
SIMULATION RESULTS 

In this chapter, both the theoretical and simulated performance of DS-IQ-DBPSK 

are presented and discussed.  In examining the theoretical performance, analytic 

expressions for the probability of bit error  versus  are developed for AWGN 

channel and a Rayleigh fading channel.  Expressions are also developed for  which 

incorporate the expected improvements in performance by using hard and soft decision 

error-correction coding in the case of AWGN.   

bP 0/bE N

bP

For the Seaweb modem simulation, three different aspects of performance were 

examined.  First, a plot of the BER versus  was generated using Monte Carlo 

simulation on the two channels presented in Chapter IV.  The Monte Carlo simulation 

involved sending an adequate number of packets through the transmitter and receiver to 

generate sufficient statistics.  Sufficient statistics were taken to be enough bits or packets 

to generate error rates that are an order of magnitude greater than the theoretically 

predicted values.  This plot is compared to the expected theoretical performance.  Next, 

because the modem’s purpose is to send utility packets, a plot of the probability of packet 

error  versus  is generated. 

0/bE N

pP 0/bE N

 

A. THEORECTICAL PERFORMANCE OF DS-IQ-DBPSK IN AWGN AND 
RAYLEIGH FADING 

 

1. Performance in AWGN 

The expression for the probability of bit error for DBPSK whether sent on a single 

channel or on an I and Q channel is given as [12]: 

 
0

1 exp .
2

b
b

EP
N

 
= −

 
  (5.1) 

A plot of this expression is seen in Figure 37. 
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Figure 37.   Theoretical bit error rates versus  for DS-IQ-DBPSK in AWGN. 0/bE N

 

When a rate  convolutional coding is used, an upper bound on the 

probability of bit error is given as [12]: 

/r k n=

 1 .
free

b
d d

P B
k

∞

=

< ∑ d dP  (5.2) 

The free distance  is the minimum Hamming distance that can exist between the 

received signal and any branch in the decoding trellis.  The parameter 

freed

dB  is the sum of 

all possible bit errors that can occur when the all-zero code word is transmitted and a path 

of weight d is selected.  Finally  is the channel transition probability.  Typically, the 

first four terms in the above summation dominate and therefore need to be considered.  

The values for 

dP

dB  and  are specific to the convolutional code chosen and are freed
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available from tables and for our case [21] gives them as: 

  (5.3) 
12 13 14 15 16

1
12

: 33, 0, 281, 0, 2179.
free

d

k
d

B B B B B B

=
=

= = = = =

In the case of HDD,  is independent of the modulation scheme chosen and can 

be expressed as [12]: 

dP
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    = 

  −   

∑

∑
 (5.4) 

where p  is the probability of bit error without encoding.  When Equations 5.2, 5.3 and 

4.4 are combined, the resulting  curve is also seen in Figure 37.   bP

For SDD,  is dependent on the modulation technique.  Although no expression 

was found for DBPSK specifically, [21] states that the performance of DBPSK (again 

whether sent on a single or an I and Q channel) is simply 3 dB better than noncoherent 

frequency-shift keying (NC-FSK) modulation when using SDD.  The performance of 

NC-FSK is well published and [21] gives the expression for  as: 
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This is the same as NC-FSK with  diversity receptions and, in the case of SDD, 

 and  is the code rate.  Combining Equations 5.5 and 5.6 and shifting the results 

left by 3 dB, the resulting  curve is seen in Figure 37. 

d

freed d= r

bP
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Observing Figure 37, we can see three standard results from using FEC in an 

AWGN.  First, the upper bound on the probability of bit error for both HDD and SDD is 

only valid for .  Second, at low values of , performance with FEC can be 

worse than without FEC.  Lastly, SDD is typically 2 to 3 dB better than HDD and in our 

case the difference is just less than 2 dB. 
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The theoretical packet error rates in all cases can be determined from the 

expression: 

  (5.7) 1 (1 )N
pP = − − p

where  is the probability of packet error, pP p  is the probability of bit error for each bit in 

the packet and  is the number of bits per packet.  The theoretical  curves for 72 bit 

packets in AWGN are shown in Figure 38.   

N pP

 
Figure 38.   Theoretical packet error rates  versus  for DS-IQ-DBPSK                    

for 72 information bit packets in AWGN. 
pP 0/bE N
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2. Performance in a Rayleigh Fading Channel 

In a fading channel the received signal amplitude is no longer fixed but varies 

over time.  Therefore the expression for the received DS-IQ DBPSK signal given in 

Equation 3.8 becomes: 

 1( ) ( ) cos[ ( )] ( )sin[ ( )]
2DS IQ BPSK C I C i Q C is t a c t t t c t tω θ ω θ− −  = + − t+  (5.8) 

where  is modeled as a random variable.  The new probability of bit error for IQ-

DBPSK from Equation 5.8 is now dependant on the random variable  and can be 

expressed as: 

Ca

Ca

 [1( ) exp
2B b bP ]γ γ= −  (5.9) 

where 2
0b C ba T Nγ =  and is a function of the random variable .  The two most widely 

used channel fading models are Ricean and Rayleigh.  Rayleigh is a special case of 

Ricean where there is no direct or main path between the transmitter and receiver, i.e., all 

the received power is due to multipath.  The Rayleigh model is used most often because it 

is the “worst case” and it has analytic expressions that are easier to solve.  We will 

restrict our analysis to the Rayleigh channel.   

Ca

 For any function  of a random variable ( )g x ,x  the expected value of the function 

is given by: 

  (5.10) [ ]( ) ( ) ( )XE g x g x f x dx
∞

−∞

= ∫

where ( )Xf x is the probability density function (PDF) of the random variable.  The PDF 

for Rayleigh fading is given as: 

 1( ) exp ( )b
b

b b

f γ
buγ γ

γ γΓ

 
= − 

 
 (5.11) 
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where 2
0b C ba T Nγ =  and is analogous to .  Therefore the average (or expected) 

probability of bit error is: 

0/bE N

 [ ]
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0

( ) ( )

1 1exp exp ( )
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1 .
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b B b b b
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b b

b

P P f d

u d

γ γ γ

γ
b bγ γ γ
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γ

∞

Γ

∞

=

 
= − − 

 

=
+

∫

∫  (5.12) 

A plot of this expression is seen in Figure 39 and compared to performance in AWGN. 
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Figure 39.   Theoretical bit error rates versus  for DS-IQ-DBPSK in           
Rayleigh fading compared to performance in AWGN. 

0/bE N

 

From Figure 39, we see that the performance of DS-IQ-BPSK is significantly degraded in 

a fading environment.  Further expressions for the theoretical improvements in  when 

using HDD, SDD or diversity reception are not developed here but are available in [12]. 

bP
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B. SIMULATION RESULTS FOR AWGN CHANNEL 

 

1. Receiver Performance – Bit Error Rate 

Figure 40, 41 and 42 show the results of the Monte Carlo simulation for the 

experimental Seaweb modem in AWGN.  Bit error rates are again plotted against  

for a bit rate of 40 bits per second.  Although Seaweb requires only 72-bit packets (160 

channel coded bits) data packets, performance is also analyzed for 1242-bit packets (2500 

channel coded bits).  In the case of 1242-bit packets, the block interleaver matrix 

becomes .  The larger packet size is implemented in order to determine if the 

packet size affected the performance of either the HDD or SDD algorithms.  For 

comparison purposes, the theoretical  also plotted.  The performance curves for the 

simulation results in all figures simply connect the data points. 

0/bE N

50 50×

bP

Figure 40 shows the results for the case when no forward error-correction coding 

is used in the receiver. 

 

0 1 2 3 4 5 6 7 8 9 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
it 

E
rr

or
 R

at
e

Eb/No (dB)

Theoretical
72 bit packets
1242 bit packets

Figure 40.   Bit error rate in an AWGN channel with no error-correction coding. 
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Two observations can be made from these results.  First, the simulation results are 

quite close to those predicted from theory.  This means that the experimental Seaweb 

modem implementation accurately generates and correctly demodulates the DS-IQ-BPSK 

signal.  Second, the smaller packet size does not degrade performance. 

Figure 41 shows the results for the case when HDD is used in the receiver.  Three 

observations can be made from these results.  First, the simulation BERs are below the 

theoretical upper bound curve as expected.  Second, the BERs appear to asymptotically 

approach the upper bound limit as  increases, again as expected.  Finally we see 

that the longer 1242 bit packets have a slightly better performance than the shorter 72 bit 

packets.   

0/bE N

Figure 42 shows the Monte Carlo simulation results for SDD.  The results here 

are similar to those of HDD.  The BERs for the simulation are below the theoretical 

upper bound but approach the bound as  increases.  We also see that at higher 

values of  the larger packets have fewer errors than the short packets.  The 

difference is small, on the order of 1 dB.  Since Seaweb utility packets are constrained to 

the smaller packet size, we will confine our subsequent analysis to it. 

0/bE N

0/bE N
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Figure 41.   Bit error rate in an AWGN channel with HDD. 
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Figure 42.   Bit error rate in an AWGN channel with SDD. 
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2. Receiver Performance - Packet Error Rate 

Figures 43, 44 and 45, show the packet error rates for the AWGN channel.  Only 

the results for the 72 bit packets are shown.  In all three cases, we see that the simulation 

results are better than the theoretical results for  between 2 to 6 dB.  Also the 

simulation approaches the theoretical upper bounds of performance at higher values of 

.   

0/bE N

0/bE N
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Figure 43.   Packet error rate in an AWGN channel with no error-correction coding. 
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Figure 44.   Packet error rate in an AWGN channel with HDD. 
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Figure 45.   Packet error rate in an AWGN channel with SDD. 
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3. Performance of Synchronization Algorithms 

 One very important result to come out of the above simulations is that the 

acquisition block could not acquire the signal consistently for values of .  

In order to get results at these signal levels, the acquisition frame needed a much larger 

SNR than the data frame.  To generate the results for Figures 40 to 45 the  acquisition 

frame SNR was given an SNR 30  larger than the data frame SNR.  The value of 

 in the figures is, however, based on the bit energy in the data frame only.   

0/ 6 dbE N < B

dB

0/bE N

Having to send one portion of the utility packet at a much higher SNR than the 

other defeats the goal of trying to transmit LPD signals.  As a result, the simulation was 

also run to show performance when the SNRs of the two frames are kept the same.  

Figure 46 shows this result for AWGN.   
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Figure 46.   Bit error rate in AWGN when the acquisition frame and the data frame have 
the same SNR. 
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We see that this implementation causes severe degradation in performance.  

Again synchronization could not be achieved consistently for .  For 

 between 6 and 22 dB, BERs are still large.  It is only above 22 dB that we lock 

onto the signal at which point, because the data SNR is very high, the error rate drops to 

zero.  There were no significant differences in performance between any of the 

processing schemes.  A closer look at the data packet-by-packet shows that SDD did 

perform slightly better than HDD.   

0/ 6 dbE N < B

0/bE N

 

4. Low Probability of Detection  

Two techniques were used to assess the LPD properties of the signal in the 

AWGN channel.  For the presence of the signal to be undetectable to an unauthorized 

intercept receiver, the transmitted signal should not be audible in the channel.  It was 

determined that a transmitted signal with an  could not be audibly detected 

above the background noise, by the casual listener.  Second the transmitted signal should 

not be visible by simply looking at the time or frequency domain of the transmitted signal 

in channel.  Again for signals with an  the signals presence could not be 

detected.  This means that for a 40 bps signal to be undetectable to an unauthorized 

interceptor yet still be detectable to the receiver, the  threshold should be less than 

approximately .  In the AWGN channel  are easily achievable below 

the LPD threshold.  Other more sophisticated means are available to detect the signal (as 

discussed in Chapter III) but this is certainly a minimum threshold above which the 

signal’s presence could easily be detected 

6dBSNR < −

6dB< −

/bE

10BERs −<

SNR

0N

522 dB

 

C. SIMULATION RESULTS FOR THE MODELED SHALLOW WATER 
CHANNEL 

To examine the performance of the simulated Seaweb modem in the modeled 

shallow water channel, three different modem configurations are used in the Monte Carlo 

simulations.  In the first case, no RAKE receiver is used.  In the second case, a RAKE 
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receiver with 30 equally spaced taps and a tap spacing of T  is used to cover the first 

12.5 ms of multipath arrivals.  Lastly, a 5-tap RAKE is used where the taps are placed to 

coincide with the 5 largest multipath arrivals occurring within the first 12.5 milliseconds.  

The time index of the arrivals is artificially supplied to the receiver based on the channel 

impulse response.  As in the case of the AWGN channel, when the acquisition frame and 

data frame SNRs are kept equal, performance is very poor.  Simply increasing the SNR 

of the acquisition frame does not work in the case of the multipath channel.  This is 

because the multipath interference caused by the acquisition frame overwhelms the lower 

SNR data frame causing excessive bit errors.  Instead, initial results are obtained by 

artificially providing the start of the data frame to the receiver.  Results for BERs and 

PERs are plotted versus  for a channel encoded bit rate of 40 bits per second.  For 

each simulation run, a maximum of 1000 packets were transmitted through the channel 

for  ranging from 0 to 30 dB.  In all cases, the theoretical performance of DS-IQ-

DBPSK in a Rayleigh fading channel is also shown for comparison.  The performance 

curves for the simulation results in all figures simply connect the data points. 

C

0/bE N
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1. Receiver Performance with No RAKE 

Figure 47 and 48 show the performance of the experimental Seaweb modem 

receiver when no RAKE is used and the start of the data is artificially supplied to the 

receiver. 
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Figure 47.   Bit error rate without using the RAKE receiver for the modeled channel. 
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Figure 48.   Packet error rate without using the RAKE receiver for the modeled channel. 
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From Figures 47 and 48, we see that the modeled channel is not as severe as a 

Rayleigh fading channel, this is because we have a large main path component.  Also we 

see that HDD and SDD significantly improve performance for , with SDD 

providing the largest gain.  It is important to note the last data point in each of the curves 

indicates that this was the last integer value of  that resulted in any errors.  For 

example in Figure 47, SDD corrected all the simulation errors for values of 

.   

0/ 8 dbE N > B

B

0/bE N

0/ 11 dbE N ≥

 

2. Receiver Performance Using RAKE with 30 Fixed Spaced Taps 

Figure 49 and 50 show the performance of the experimental Seaweb modem 

receiver when 30 equally spaced taps are used in the RAKE and the start of the data is 

artificially supplied to the receiver. 
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Figure 49.   Bit error rate for the RAKE receiver using 30 taps with fixed spacing, in the 
modeled channel. 
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Figure 50.   Packet error rate for the RAKE receiver using 30 taps with fixed spacing, in 

the modeled channel. 

 

By fixing the tap spacing in the RAKE, performance is significantly worse than when the 

receiver uses no RAKE.  In this configuration the RAKE cannot effectively detect and 

utilize the energy in the multipath arrivals.  Therefore at low SNRs, the tap outputs are 

essentially noise.  SDD still outperformed HDD and improved overall performance for 

.   0/ 14 dbE N ≥ B

 

3. Receiver Performance Using RAKE with 5 Adaptively Spaced Taps 

Figure 51 and 52 show the performance of the experimental Seaweb modem 

receiver when 5 adaptively spaced taps are used in the RAKE and the start of the data is 

artificially supplied to the receiver.  The tap locations are artificially supplied to the 

receiver and correspond to the first 5 peaks of the channel impulse response.   
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Figure 51.   Bit error rate for the RAKE receiver using 5 adaptively spaced taps, in the 

modeled channel. 
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Figure 52.   Packet error rate for the RAKE receiver using 5 adaptively spaced taps, in the 
modeled channel. 
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This implementation of the RAKE has the best performance of the three 

configurations.  Likewise SDD was the optimal decoding method.  Figure 53 and 54 

illustrate the comparative results for each of the three receiver configurations using SDD  

We see that the improvement provided by using the 5 adaptive taps in the RAKE is at 

best 1 dB better than using no RAKE at all. 
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Figure 53.   Comparison of bit error rate performance for the three receiver configurations 
using SDD, in the modeled channel. 

 83 



0 2 4 6 8 10 12 14 16 18 20
10

−4

10
−3

10
−2

10
−1

10
0

P
ac

ke
t E

rr
or

 R
at

e

Eb/No (dB)

No Rake
Fixed 30 Taps
Adaptive 5 Taps

 
Figure 54.   Comparison of packet error rate performance for the three receiver 

configurations using SDD, in the modeled channel. 

 

4. Receiver Performance When Acquisition Frame and Data Frame 
Have Equal SNRs. 

Figures 55 and 56 show the performance of the experimental Seaweb modem 

implementation when the acquisition frame and data frame SNR are equal.  Only the 

results for SDD are presented, because it had the best performance. 
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Figure 55.   Bit error rate for the RAKE receiver using SDD and 5 adaptively spaced taps 

located at the dominant multipath arrivals, in the modeled channel. 
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Figure 56.   Packet error rate for the RAKE receiver using SDD and 5 adaptively spaced 
taps located at the dominant multipath arrivals, in the modeled channel. 
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As in the case of AWGN, performance is significantly reduced.  The receiver is not able 

to acquire the signal consistently for values of .  For dB, 

all three configurations have equally poor performance.  Above 30 dB the adaptive 

RAKE’s performance is best, but only on the order of less than 2 dB.  When 

, the receiver can effectively acquire the signal and because of the high 

SNR, the error rate immediately drops to zero.   

0/ 20 dbE N ≤ B

B

B

B

022 / 30bE N≤ ≤

0/ 33 dbE N >

 

5. Summary of Performance 

In this chapter, we demonstrated that our receiver performed within theoretical 

expectations for the ideal AWGN channel.  SDD was shown to outperform HDD, which 

outperformed the case when no forward error correction coding was used.  In the 

modeled multipath channel when the starting location of the data frame is artificially 

provided, the receiver can achieve BERs below 10  for  when SDD is 

used in any of the RAKE configurations, which is below the LPD threshold.  When the 

SNRs of the two frames are kept equal, we only achieve  when 

.  This is well above the LPD threshold. 

4−
0/ 22 dbE N <

4BER 10−<

0/ 33 dbE N >

In the next and final chapter, we summarize the important results and present 

areas for follow-on work.   
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VI. CONCLUSION 

The goal of this thesis was to develop in software a DSSS modem suitable for 

underwater acoustic communications and to examine its performance through Monte 

Carlo simulation.  The specific application of the modem is for utility packet transmission 

in Seaweb.  The transmitter and receiver were implemented in software using MATLAB 

and the receiver was specifically designed to process the received transmission bit by bit.  

The channel was represented as an impulse response generated by a shallow-water 

acoustic propagation model.  The modem was successfully implemented and our analysis 

of the modeled channel demonstrates that our design meets the utility packet 

requirements for Seaweb with some limitations. 

 

A. FINDINGS 

Our receiver was shown to perform according to theoretical expectations for an 

ideal additive white Gaussian channel and SDD was found to be the optimum decoding 

scheme.  This gave us confidence that the results obtained for the modeled channel would 

be accurate.   

In the modeled multipath channel, when the data frame starting location was 

artificially provided, the receiver could detect and demodulate signals for values of 

 well below the 22 dB LPD threshold.  Error-correction coding significantly 

improved performance with SDD providing the greatest gain.  The RAKE receiver did 

improve performance when the tap locations were chosen to coincide with the occurrence 

of the multipath arrivals.  But this improvement was small, less than 2 dB.  This was 

much smaller than expected since diversity receptions should provide significantly 

greater gain.  Using RAKE taps with a fixed spacing and in a sufficient number to cover 

the multipath arrivals proved to be the worst performing configuration. 

0/bE N ,

The most significant limitation of the experimental modem was the acquisition 

algorithm.  When its SNR of the acquisition frame was kept equal to the SNR of the data 
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frame, performance was very poor in all cases and values of  were 

required to achieve low bit and packet error rates.  At these values of , the signal 

is easily audible at the receiver, violating the requirements for a low probability of 

detection signal.  It must be stressed that with sufficient SNR the acquisition algorithm 

performed well and bit errors and packet error dropped to zero. 

0/ 33 dbE N >

0/bE N

B

 

B. FOLLOW-ON WORK 

There are four primary areas identified for follow-on work.  First, improvements 

in the acquisition process should be pursued.  Although the algorithm presented here 

worked well for signals with large SNRs, a better method of acquiring the signal must be 

found if the modem is to meet the LPD requirements. 

Second, the detection algorithms should be improved.  The RAKE receiver did 

not perform as well as hoped and much higher gains should theoretically be achievable 

by using diversity receptions.  Closer analysis of the effects of incrementally increasing 

the number of RAKE taps, changing the tap threshold and performing a weighted 

combining of the tap outputs are just a few areas that could be examined.  Also, alternate 

methods such as blind equalization may prove to be better at undoing the channel impulse 

response and being able to use the energy present in the multipath arrivals.   

Third, the performance of the experimental Seaweb modem must be measured at 

sea.  Although [11] and [16] have presented experimental results showing the general 

viability of DSSS, these experiments were performed at relatively high signal-to-noise 

ratios.  There is little published work demonstrating performance at low SNRs (i.e., 

below 0 dB), which is the region of particular interest if DSSS is to meet the LPD 

requirements for Seaweb.   

The fourth and final area for future work is in developing better channel models.  

The channels used in this thesis were relatively simple.  The most detailed channel was 

generated using the ocean impulse response produced by the oceanographic acoustic 

propagation model called Bellhop.  The output of Bellhop was further simplified by 

converting it to a set of delta functions.  This model is not time invariant nor did it 
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introduce Doppler spreading, both of which are characteristics of a real ocean channel.  

Also, there is little published work comparing the predicted performance of broadband 

underwater acoustic communication signals using modeled channels with actual 

experimental results.  This work is being pursued in part by [2], but without validated 

models that introduce time invariance and Doppler spreading, research is confined to 

expensive and lengthy experimental analysis.   
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APPENDIX A.  SOFTWARE USERS MANUAL 

This Appendix acts as a software manual for the experimental Seaweb modem 

simulation.  MATLAB 6.1 release 12 was used to implement all aspects of the 

transmitter, receiver and channel.  A modular approach was taken when developing the 

software so that each significant process has its own function (i.e., MATLAB m-file).  

The focus in developing the MATLAB code was not on computational efficiency but 

instead on ease of understanding the implementation.  It is assumed that the reader has a 

working knowledge of MATLAB. 

A software flow diagram of the code is seen in Figures 58 and 59.  Each of the 

blocks in the figures represents a separate MATLAB function written as an m-file.  The 

overall controlling m-file is called seaweb_modem_simulation.m.  Running this single 

MATLAB m-file will call all the other necessary functions and execute them. 

get_data.m

conv_coder.m
‘encode’

block_inter.m
‘interleave’

setup_modem.m
simulation_params.mat
modem_params.mat
shapingfilter_params.mat
acqframe_params.mat
rake_params.mat

PNcode.mat

dsss_mod.m

TRANSMITTER

B
A

data.mat

acquisition_frame.m

B

get_data.m

conv_coder.m
‘encode’

block_inter.m
‘interleave’

setup_modem.m
simulation_params.mat
modem_params.mat
shapingfilter_params.mat
acqframe_params.mat
rake_params.mat

PNcode.mat

dsss_mod.m

TRANSMITTER

B
A

data.mat

acquisition_frame.m

B

 
Figure 57.   Software flow diagram of the transmitter portion. 
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dsss_demod_fixed.m
dsss_demod_adaptive.m

block_inter.m
‘interleave’

conv_coder.m
‘encode’

RECEIVER

A

acquire_synch.m

DLL.m

get_rake_taps.m

B

channel.m

dsss_demod_fixed.m
dsss_demod_adaptive.m

block_inter.m
‘interleave’

conv_coder.m
‘encode’

RECEIVER

A

acquire_synch.m

DLL.m

get_rake_taps.m

B

channel.m

dsss_demod_fixed.m
dsss_demod_adaptive.m

block_inter.m
‘interleave’

conv_coder.m
‘encode’

RECEIVER

A

acquire_synch.m

DLL.m

get_rake_taps.m

B

channel.m

 
Figure 58.   Software flow diagram for the channel and the receiver portions. 

 

The key software blocks identified in the above figures are now discussed in 

detail.  This is not a comprehensive listing of all the functions used in the simulation, 

since many built-in MATLAB functions are called.  A complete listing of the Seaweb 

simulation source code is included in Appendix B.   

seaweb_modem_simulation.m – This function is the overall controlling m-file.  

There is no input to this function and the output is a file called: 

• simulation_results.mat, which contains a variable called summary. 
This variable summarizes the simulation errors and indicates the 
simulation parameters used, i.e. number of packets, SNR,  
and the channel.   

0/bE N

setup_modem.m – This function defines all the design parameters.  These include 

everything from the sampling frequency and packet length to the tap thresholds used in 

the RAKE receiver.  The function has no inputs or outputs, instead the parameters are 
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saved as five individual mat files that are later loaded by other functions.  These mat files 

are: 

• simulation_params.mat – defines the parameters to be used in the 
overall simulation.  These include the number of packets and the 
values of  to be used. 0/bE N

• modulation_params.mat – defines the parameters needed for the 
transmitter and receiver including bit rate, chip rate, sampling rate, 
center frequency and packet length. 

• shapingfilter_params.mat – defines the filter order and filter 
coefficients. 

• acqframe_params.mat – defines the length and separation of the 
acquisition frame in chips. 

• rake_params.mat – defines the rake settings including the tap 
thresholds and number of taps. 

 

get_data.m – This function generates the information bit sequence.  A case 

statement determines whether the data comes from a previously generated mat file 

(‘savedata’) or is generated as a random bit sequence (‘random’).  The output of this 

function is a bit sequence. 

convolutional_coder.m – This function codes or decodes the input bit sequence 

depending on the case statement indicated.  The code rate and constraint length are 

defined within the function.  To encode the data, the case statement is ‘encode’, to decode 

with HDD use ‘decode_hard’ and to do SDD use ‘decode_soft’. 

block_interleaver.m – This function interleaves or deinterleaves the bit sequence 

passed to it, depending on the case statement indicated.  To interleave, the case statement 

is ‘interleave’.  To deinterleave the case statement is ‘deinterleave’.   The matrix size is 

defined within the function and must be manually changed by the user if packet sizes, 

other than the 72-bit Seaweb packets, are used.  The input and output are both bit 

sequences. 

dsss_mod.m – This function implements all the transmitter stages including 

chipping the data, modulating the data, appending the acquisition frame to the start of the 
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packet.  The input is a bit sequence and the output is the transmitted signal.  All the 

required parameters are loaded from mat files generated by setup_modem.m. 

acquisition_frame.m – This is a sub-function, which generates the acquisition 

frame that is to be appended to the start of the data frame.  It is called separately by 

dsss_mod.m.  This is the frame that is later used to acquire the signal in the receiver. 

shapingfilter.m – This is also a sub-function called by dsss_mod.m, 

dsss_demod_fixed.m, dsss_demod_adaptive.m and acqistion_frame.m.  Its role is to  filter 

the data passed to it using the pulse-shaping filter parameters defined in setup_modem.m.  

The output is the filtered data waveform. 

channel.m – This function defines each of the channels used by the simulation.  It 

accepts three inputs:  the transmitted signal, the noise power to be added to the signal and 

a case statement indicating which channel to use.  The function then convolves the input 

signal with the appropriate channel and adds AWGN to the result.  The output is a single 

time series data set that becomes the input to the receiver. 

dsss_demod_fixed.m / dsss_demod_adaptive.m – These functions perform all 

aspects of demodulating the received signal.  One function or the other is used depending 

on whether fixed or adaptive tap spacing is desired.  The required parameters are loaded 

from the rake_params.mat file generated by setup_modem.m.  Two sub-functions, 

acquire_synch.m and DLL.m, are called to perform acquisition and tracking of the signal.  

The input is the received signal. The outputs are both hard decision bits and voltage 

levels to be used by the soft decision decoder. 

acquire_synch.m – This function determines the start of the data sequence.  The 

input is the received signal and the outputs are pointers indicating the location of the first 

data sample, an index of the correlation peaks and the output of the matched filter.   

DLL.m – This function executes the delay lock loop.  The function inputs are the 

received signal, the receiver generated replica and four pointers that indicate the start and 

end of the bit to be processed and the start and end of the receiver generated replica.  The 

output of the DLL is the number of samples that the replica must be shifted in order to be 

aligned with the incoming signal. 
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get_rake_taps.m – This function uses the output of the acquire_synch.m block to 

estimate the channel impulse response.  It then outputs the sample index of the multipath 

arrivals to the adaptive rake receiver.  This function calls a p-file named mmpeaks.p, 

which was downloaded from the Mastering Matlab web site [22] and is used to find the 

peaks of the matched filter output in the acquisition block.  These peaks represent an 

estimate of the multipath arrival times.  

upsampler.m – This function, although not indicated in the software flow 

diagram, is used throughout the simulation.  It lengthens the binary sequence passed to it 

by a user-defined amount.  This serves the purpose of increasing the number of samples 

in the bit or chip.  One use of this function is up-sampling the chipping sequence to the 

simulation sampling rate so that it can be modulated. 

error_sum.m – This function generates the bit error rates and packet error rates for 

the simulation.  The inputs are the decoded information bit sequence and the bit sequence 

originally generated.  These are compared and error rates are generated. 
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APPENDIX B.  MATLAB CODE 

 
%******************************************* 
% SEAWEB MODEM SIMULATION 
% 
% This Program is the overall controlling 
% software for the SeaWeb modem simulation 
% all other functions are called by executing 
% this m-file 
% 
% developed by Peter Duke September 2002 
% last modified 2/9 
%******************************************* 
clear all; close all; clc; 
 
tic;                        % starts clock to measure simulation run time 
disp('started'); 
 
setup_modem;                % sets up all simulation settings 
load('simulation_params') 
load('modulation_params');   
 
for m = 1:length(EbNo_dB);  %loop through each of the EbNo values 
 
        for n = 1:N             %loop through each of the n  packets 
         
         [m n] 
 
         % generate the information data bit sequence 
          d = get_data('random');  
 

% channel encode the data 
          dc = convolutional_coder('encode',d);     %convolutional code the bits 
          de = block_interleaver('interleave',dc);  %interleave the bits 
 
         % modulate the data 
          [tx, signal_power] = dsss_mod(de); 
         
         % generate the noise power associated with EbNo 
          EbNo(m) = 10.^(EbNo_dB(m)/10); 
          Eb = signal_power.*Tb; 
         No = Eb./EbNo(m); 
        sigma_n = sqrt(No./(2*Ts)); 
       noise_power = sigma_n.^2;     
       SNR_dB = 10.*log10(signal_power./noise_power); 
         
         % pass the transmit signal through the channel 
          if channel_type == 0; ch = channel('awgn',tx,noise_power); 
          elseif channel_type ==1; ch = channel('multinoise1',tx,noise_power); 
          elseif channel_type ==2; ch = channel('multinoise2',tx,noise_power); 
          end 
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        % demodulate the received data in hard and soft decisions 
         [hb, sb, shifts] = dsss_demod_adaptive(ch); 
         % [hb, sb, shifts] = dsss_demod_fixed(ch); 
   
         % channel decode the received hard bits 
 h1 = block_interleaver('deinterleave',hb);    %de-interleave 
 h2 = convolutional_coder('decode_hard',h1);   %HDD 
 mh = h2; 
 
         % channel decode the received soft bits 
 s1 = block_interleaver('deinterleave',sb);    %de-interleave 
 s2 = convolutional_coder('decode_soft',s1);   %SDD 
 ms = s2; 
   
         % determine the bit errors 
 channel_errors = (hb - de)~=0; 
 total_channel_errors(n,:) = sum(channel_errors); 
   
         % determine the packet errors 
 packet_errors_hdd(n,:) = sum((mh - d)~=0); 
 packet_errors_sdd(n,:) = sum((ms - d)~=0); 
  
    end 
  
    % generate a summary of all the simulation results 
    summary(:,m) = error_sum(channel_type, N, EbNo_dB(m), SNR_dB, ... 
                                          channel_errors, total_channel_errors, ... 
                                                 packet_errors_hdd, packet_errors_sdd) 
                             
end 
 
% save the simulation results 
save simulation_results summary  
 
disp('finished'); 
t = toc 
 
% load handel; 
% wavplay(y,8000); 
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function setup_modem 
 
%******************************************* 
% SETS UP THE TX AND RX MODEMS 
% 
% This function is sets all modem parameters 
% and saves them as separate *.mat files 
% Five mat files are generated 
%   1. simulation_params.mat 
%   2. modulation_params.mat 
%   3. acqframe_params.mat 
%   4. shapingfilter_params.mat 
% 
% developed by Peter Duke September 2002 
%******************************************* 
 
%--------------------------------------- 
% Set up Simulation Parameters 
%disp('   setting up the modulation parameters'); 
 
N = 1;                  %number of packets 
EbNo_dB = 20;           %EbNo values to use 
channel_type = 1;       %channel type 0 = AWGN 
 
save simulation_params      N EbNo_dB channel_type; 
 
 
%---------------------------------------------------- 
% Set up the RAKE Receiver Parameters 
 
Ntaps = 1;              % number of taps to use in the fixed RAKE 
tap_threshold = 0.3;    % RAKE output threshold 
ht_threshold = 0.05;    % threshold for determining the multipath peak 
a = 0.9;                % weight factor for the DLL loop filter                  
 
    save rake_params            Ntaps tap_threshold ht_threshold a; 
 
 
%--------------------------------------- 
% Set up Modulation Parameters 
 
load gold2047_1;      % PN chipping sequence file.mat, variable name must be "code" 
 
Rb = 40;  % bit rate 
Rc = 2400;      % chip rate 
Rs = 48000;     % sampling rate 
fs = Rs;        % sampling frequency 
Tb = 1/Rb;   % bit length 
Tc = 1/Rc;   % chip length 
Ts = 1/fs;      % sampling interval 
fcarrier = 12000;  % carrier frequency 
 
samples_per_bit  = Rs/Rb; % samples per bit 
samples_per_chip = Rs/Rc; % samples per chip 
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chips_per_bit = Rc/Rb;  % chips per bit 



 
% %------------------------ 
% Rc = 2560;      %chip rate 
% Rs = 40960;     %sampling rate 
% fs = Rs;        %sampling frequency 
% Tc = 1/Rc;   %chip length 
% fcarrier = 12000;      %carrier frequency 
% samples_per_bit  = 496*2; %samples per bit 
% samples_per_chip = 16;     %samples per chip 
% chips_per_bit = 31*2;  %chips per bit 
% Rb = Rs/samples_per_bit; Tb = 1/Rb; 
% %----------------------- 
 
packet_length = 160;  % number of bits transmitted per packet  
 
% set modulation method: 1 = dbpsk, 2 = balanced qpsk (iq-dbpsk), 3 = dqpsk 
modulation_method = 2;  % modulation method 
 
% save settings to "modulation_params.mat" file 
save modulation_params  Rb Rc Rs fs Tb Tc Ts fcarrier code ... 
     samples_per_bit samples_per_chip chips_per_bit... 
     packet_length ... 
     modulation_method; 
 
 
%---------------------------------------------------- 
% Set up Pulse Aquistion Frame Parameters 
 
% set acquisition method:   1 = 3 PN sequences 
%                           2 = none 
acq_method = 1; 
 
% Acquisition method 1 = 3 PN sequences 
if acq_method == 1; 
    len = 240;   % length in chips of each PN acquistion sequences   
    sep = 200;   % separation in chips between acquistion sequences 
    
% Acquisition method 2 = no aacquisition fram 
% this is used to speed up simulations with AWGN only 
elseif acq_method ==2; 
    len = 0; 
    sep = 0; 
else 
    error('ERROR not a valid acquistion method'); 
end 
                         
    save acqframe_params  Rb Rc Rs fs Tb Tc Ts fcarrier code ... 
     samples_per_bit samples_per_chip chips_per_bit ... 
     acq_method ... 
     len sep; 
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%---------------------------------------------------- 
% Set up Pulse Shaping Filter Parameters 
 
% set pulse shaping filter types: 1 = LPF filter, 2 = RRC 
shapingfilter_type = 1; 
 
% Shaping Filter type 1 = LPF to band limit to +/- 2500 Hz 
if shapingfilter_type == 1; 
 n = 64;       % filter order 
 fpass = 2500;  % passband; ought to be a bit bigger than needed 
 fstop = 3000;  % stopband 
 fmax = fs./2;  % maximum transmittable frequency at that rate 
 w = [1 10];   % weighting factor 
 f = [0 fpass/fmax fstop/fmax 1]; % frequency band edges 
 A = [1 1 0 0];      % desired spectrum amplitues at band edges 
 b = remez(n,f,A); 
 a = 1; 
     
 save shapingfilter_params  Rb Rc Rs fs Tb Tc Ts fcarrier code ... 
      shapingfilter_type ... 
      n b a;                               
                                 
else 
     disp('ERROR not a valid Pulse Shaping Filter type'); 
end 
 
 

 101 



function [varargout] = get_data(oper); 
 
%******************************************* 
% This function either 
%   1. generates random data, or 
%   2. loads data from a specific data file 
%******************************************* 
 
% disp('getting data'); 
 
switch oper 
 
% generate random data     
case 'random' 
    d = randint(1,72); %generate the random data bit sequence 
 
% load data from a previously saved data file 
case 'savedata' 
     
    load savedata 
    d = savedata 
     
end 
 
varargout{1} = d; 
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function [varargout] = convolutional_coder(oper, varargin) 
 
%******************************************* 
% CONVOLUTIONAL ENCODER/DECODER 
% 
% This funciton performs both 
% Convolutional Coding and Decoding of the Data 
% depending on the operator passed 
% input - the information bit sequence 
% output - the convolutionally encoded bit sequence 
% 
% developed by Peter Duke September 2002 
%******************************************* 
 
%-------------------------------------- 
% use constraint length 9 coder/decoder 
% generator polynomial is the same as for IS-95 
 
K = 9; % contraint length 
flushbits = ones(1, K-1); 
trel = poly2trellis(K,[753 561]); 
 
%--------------------------------------- 
switch oper 
     
%--------------------------------------- 
case 'encode' 
     
uncoded_data = varargin{1}; 
message = [uncoded_data flushbits]; 
 
coded_data = convenc(message,trel); 
varargout = {coded_data}; 
 
%--------------------------------------- 
case 'decode_hard' 
     
% Use hard decision decoding 
 
coded_data = varargin{1}; 
tbl = 2; 
decoded_data = vitdec(coded_data, trel, K-1, 'trunc', 'hard'); 
 
varargout = {decoded_data(1:end-K+1)}; 
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%--------------------------------------- 
case 'decode_soft' 
     
% Use 4-bit soft decision decoding 
% To prepare for soft decision decoding,map to decision values 
 
coded_data = varargin{1}; 
% [x,qcode] = quantiz(coded_data, [-1.65:2*1.65/14:1.65],[0:1:15]); % Values in qcode are between 0 and 
2^3-1. 
partition = [-pi/2 : (pi/16) : pi/2]; 
partition = partition(2:end-1); 
codebook = [0:1:15]; 
[x,qcode] = quantiz(coded_data, partition, codebook); % Values in qcode are between 0 and 2^3-1. 
decoded_data = vitdec(qcode, trel, K-1, 'cont', 'soft', 4); 
 
varargout = {decoded_data(K:end)}; 
 
end 
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function [varargout] = block_interleaver(oper,varargin) 
 
%******************************************* 
% BLOCK INTERLEAVER / DE-INTERLEAVER 
% 
% this function perfroms both block Interleaving 
% and de-Interleaving depending on the operator passed 
% input - the convolutionally encoded bit sequence 
% output - the channel encoded bit sequence 
% 
% developed by Peter Duke September 2002 
%******************************************* 
 
%------------------------------------- 
% set number of rows and columns 
rows = 16; cols = 10; 
 
%--------------------------------------- 
switch oper 
     
%--------------------------------------- 
case 'interleave' 
 
uninterleaved_data = varargin{1}; 
 
block = reshape(uninterleaved_data,rows,cols); 
interleaved_data = reshape(block',1,prod(size(block))); 
 
varargout = {interleaved_data}; 
 
%--------------------------------------- 
case 'deinterleave' 
     
interleaved_data = varargin{1}; 
 
block = reshape(interleaved_data',cols,rows); 
deinterleaved_data = reshape(block',1,prod(size(block))); 
 
varargout = {deinterleaved_data}; 
 
end 
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function [varargout] = dsss_mod(varargin) 
 
%*********************************************************** 
% MODULATOR 
% 
% Modulate the Data Using DSSS and 
% Differential Binary phase-shift keying with  Quadrature Spreading (DS-IQ-DBPSK) 
% 
% developed by Peter Duke September 2002 
% last modified 2/9 
%*********************************************************** 
 
%******************************************** 
% Initialize the Modem 
 
% Read in the data 
data = varargin{1}; 
 
% Setup modem using settings in modem_params.mat 
% and check that it is set up correctly 
 
load ('modulation_params'); 
config_error_check('modulator',data); 
 
%******************************************** 
% DS-IQ-DBPSK Modulator 
 
%--------------------------------------------- 
% generate the differential bit sequence 
 
bi = [NaN data];   % data bits 
dbi(1) = 1;   % differential data bits 
for i = 2:length(bi) 
    dbi(i) = not(xor(dbi(i-1), bi(i))); 
end 
 
%--------------------------------------------- 
% convert differential data from 0/1 to -1/+1 
 
nrz_dbi = (dbi*2)-1;  
number_of_dbits = length(nrz_dbi); 
 
%--------------------------------------------- 
% up sample the data to the chip rate 
 
data_sequence = upsampler(nrz_dbi, chips_per_bit); 
 
%--------------------------------------------- 
% determine repetitions/portion of orignal gold code required 
% to chip entire output 
 
total_chips_needed = number_of_dbits.*chips_per_bit; 
number_of_repetitions = ceil(total_chips_needed./length(code)); 
longcode = repmat(code, 1, number_of_repetitions); 
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%--------------------------------------------- 
% chip the data  
 
% generate chip sequence, chip all data with one sequence  
chip_sequence_ip = longcode(1, 1:(chips_per_bit.*number_of_dbits)); 
chip_sequence_qp = longcode(2, 1:(chips_per_bit.*number_of_dbits)); 
 
% chip the data 
chipped_data_sequence_ip = chip_sequence_ip .* data_sequence; 
chipped_data_sequence_qp = chip_sequence_qp .* data_sequence; 
     
%--------------------------------------------- 
% Up sample Chipped Data Sequence to fs and  shape the chip sequence using the pulse shaping filter 
 
sampled_chips_ip = upsampler(chipped_data_sequence_ip, samples_per_chip); 
sampled_chips_qp = upsampler(chipped_data_sequence_qp, samples_per_chip); 
 
shaped_data_ip = shapingfilter(sampled_chips_ip); 
shaped_data_qp = shapingfilter(sampled_chips_qp); 
shaped_data = [shaped_data_ip; shaped_data_qp]; 
 
%--------------------------------------------- 
% modulate with both and I and Q carrier 
 
t = [0:1/fs:(length(shaped_data)/fs)-1/fs]; 
carrier_ip = (1./sqrt(2)).*cos(2.*pi.*fcarrier.*t); 
carrier_qp = (-1./sqrt(2)).*sin(2.*pi.*fcarrier.*t); 
 
if modulation_method==1; 
    modulated_data = shaped_data(1,:).*carrier_ip ; 
elseif modulation_method==2 
    modulated_data = shaped_data(1,:).*carrier_ip + shaped_data(2,:).*carrier_qp; 
end 
 
%--------------------------------------------- 
% add the acquistion frame 
 
load acqframe_params; 
 
if acq_method == 1 
    acq_frame = acquisition_frame; 
elseif acq_method ==2; 
    acq_frame = [];         % used only to speed up the AWGN simulations 
end 
 
tx_signal = [acq_frame modulated_data]; 
 
tx_signal_power = (sum(modulated_data.^2))./length(modulated_data); 
 
%******************************************** 
% Generate Modem Output 
 
varargout{1} = tx_signal; 
varargout{2} = tx_signal_power; 
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function [varargout] = acquisition_frame 
 
%******************************************* 
% ACQUISITION FRAME GENERATOR 
% 
% This function gemerates the acqisition frame 
% which is to be appended to the date frame 
% in the transmiltter 
% input - none 
% output - acquisiton frame 
% 
% developed by Peter Duke September 2002 
% last modified 2/9 
%******************************************* 
 
load ('acqframe_params'); 
 
% geenerate the acquistion frame bit sequence 
c = code(:,1:len); 
z = zeros(2,sep); 
chip_sequence = [ z c z c z c z ]; 
 
% upsample to the sampling frequency 
sampled_chips_ip = upsampler(chip_sequence(1,:), samples_per_chip); 
sampled_chips_qp = upsampler(chip_sequence(2,:), samples_per_chip); 
 
% pass the sequence through the pulse shaping filter 
shaped_chips_ip = shapingfilter(sampled_chips_ip); 
shaped_chips_qp = shapingfilter(sampled_chips_qp); 
 
% modulate the sequence 
t = 0: 1/fs : length(shaped_chips_ip)/fs - 1/fs; 
carrier_ip = (1./sqrt(2)).*cos(2.*pi.*fcarrier.*t); 
carrier_qp = (-1./sqrt(2)).*sin(2.*pi.*fcarrier.*t); 
 
% add the two channels to generate the acquistion frame 
acq_frame = shaped_chips_ip.*carrier_ip + shaped_chips_qp.*carrier_qp; 
 
% save an index to the first data sample for later comparison 
first_data_sample = length(acq_frame) + 1; 
save first_data_sample first_data_sample; 
 
% generate the output 
varargout{1} = acq_frame; 
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function [varargout] = shapingfilter(varargin); 
 
%******************************************* 
% SHAPING FILTER 
% 
% This function filters the sampled data sequence 
% passed to it using the pulse shaping filter 
% parameters generated in the function setup_mode.m  
% it is used to pulse shape the PN chipping waveform 
% in both the transmitter and receiver 
% 
% developed by Peter Duke September 2002 
% last modified 2/9 
%******************************************* 
 
%----------------------------------------- 
% read in the data to be filtered and 
% the filter parameters 
% filter parameters are defined from setup_modem.m 
% where: n = filter order 
%    b,a are the filter coefficients 
%           alpha = rolloff factor for the Root Rasied Cosine 
 
data_in = varargin{1}; 
load ('shapingfilter_params') 
 
%----------------------------------------- 
% Use LPF filter - type 1 
if shapingfilter_type ==1; 
     
 % add trailing zeros to get all data through filter 
 data_in = [data_in zeros(1,n+1)]; 
  
 % filter the input signal 
 data_out = filter(b, a, data_in); 
 
 
%----------------------------------------- 
% Use RRC filter - type 2 
elseif shapingfilter_type ==2; 
     
 data_out = rcosflt(data_in, 1, samples_per_chip, 'sqrt/fs', rolloff_factor)'; 
         
end 
 
%----------------------------------------- 
% gernerate output 
 
varargout{1} = data_out; 
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function [varargout] = channel(oper,varargin); 
 
%*********************************************************** 
% CHANNEL SIMULATOR 
% 
% This funciton loads the channel ht 
% convolves it with the transmitted signal 
% and adds additive white gaussian noise 
% input - transmitted signal and channel to be used 
% output - input to the receiver 
% 
% developed by Peter Duke September 2002 
% last modified 2/9 
%*********************************************************** 
 
%------------------------------------------------     
% define and load variables 
 
tx = varargin{1}; 
load modulation_params; 
 
switch oper 
    
%------------------------------------------------ 
% add AWGN only 
 
case 'awgn' 
 
     tx = [tx zeros(1,fs*0.2)];  % add 0.2sec of silence to the end 
     noisepower = varargin{2}; 
     noisestd = sqrt(noisepower); 
     noise = randn(1,length(tx)).*noisestd; 
     np = var(noise); 
     out = tx + noise; 
    
%------------------------------------------------ 
% load the channel ht 
% convolve it with the transmitted signal and add AWGN 
 
case 'multinoise1' 
 
     tx = [tx zeros(1,fs*0.2)];  % add 0.2sec of silence to back 
     noisepower = varargin{2}; 
     noisestd = sqrt(noisepower); 
     
     Tc = 20;                                        % chip spacing 
     ht = [1.0 zeros(1,1.5*Tc-1) 0.6 zeros(1,2*Tc-1) 0.4]; % generate ht 
     ht = ht./sqrt(sum(ht.^2));                      % normalize ht 
     taplocations = find(ht~=0)                     
     save taplocations taplocations; 
 
     out = conv(tx,ht); 
     out = out + randn(1,length(out))*noisestd; 
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%------------------------------------------------  
% load the channel ht 
% convolve it with the transmitted signal and add AWGN 
 
case 'multinoise2' 
 
  noisepower = varargin{2}; 
 noisestd = sqrt(noisepower); 
     
 load sigex_ht; 
    ht = ht3; 
    taplocations = find(ht~=0);                      
    save taplocations taplocations; 
 
 out = conv(tx,ht); 
 out = out + randn(1,length(out))*noisestd; 
         
end 
 
%------------------------------------------------     
% generate output 
 
varargout{1} = out; 
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function [varargout] = dsss_demod_fixed(varargin)  
 
%*********************************************************** 
% DEMODULATOR - USING A FIXED-TAP RAKE RECEIVER 
% 
% This functions Demodulates the DS-IQ-DBPSK signal 
% using a RAKE receiver  
% input - output of the channel simulator 
% output - hard and soft bit sequences 
% 
% developed by Peter Duke September 2002 
% last modified 2/9 
%*********************************************************** 
 
%******************************************** 
% Initialize the Demodulaoter 
 
%-------------------------------------------- 
% Read in the data  to be processed by the RAKE receiver 
data = varargin{1}; 
 
%----------------------------------------------- 
% Setup modem using settings in modem_params.mat 
% and check that it is set up correctly 
 
load ('modulation_params'); 
load ('rake_params');           %loads the number of taps and threshold 
 
% check that tx and rx are conFigured the same 
config_error_check('demod') 
 
% initialize variables  
shift = 0; 
shifts = 0; 
allx = [ ]; 
ally = [ ]; 
 
%******************************************** 
% Acquire the Packet Data 
 
load ('acqframe_params'); 
 
if acq_method == 1; 
     
    [first_data_sample, multipath, window, index_corr_peak] = acquire_sync(data); 
    %   load first_data_sample 
    data = data(first_data_sample:end); 
 
elseif acq_method ==2; 
     
    data = data; 
     
end 
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%******************************************** 
% Demodulate the Data using a non-coherent RAKE receiver 
 
%--------------------------------------------- 
% determine repetitions/portion of orignal gold code required 
% to chip entire output 
 
number_of_dbits = packet_length + 1; 
total_chips_needed = number_of_dbits.*chips_per_bit; 
number_of_repetitions = ceil(total_chips_needed./length(code)); 
longcode = repmat(code, 1, number_of_repetitions); 
 
%--------------------------------------------- 
% Generate replica of entire modulated and shapped chipping sequence 
 
% generate chip sequence for all data  
chip_sequence_ip = longcode(1,1:(chips_per_bit.*number_of_dbits)); 
chip_sequence_qp = longcode(2,1:(chips_per_bit.*number_of_dbits)); 
 
% Upsample chip sequence to fs 
sampled_chips_ip = upsampler(chip_sequence_ip, samples_per_chip); 
sampled_chips_qp = upsampler(chip_sequence_qp, samples_per_chip); 
 
% pulse shape the upsampled sequence using shapingfilter.m 
shaped_chips_ip = shapingfilter(sampled_chips_ip); 
shaped_chips_qp = shapingfilter(sampled_chips_qp); 
 
% modulate with carrier 
t = [0:1/fs:(length(shaped_chips_ip)/fs)-1/fs]; 
carrier_ip = 2.*cos(2.*pi.*fcarrier.*t); 
carrier_qp = -2.*sin(2.*pi.*fcarrier.*t); 
 
replica_ip = shaped_chips_ip.*carrier_ip; 
replica_qp = shaped_chips_qp.*carrier_qp; 
replica = [replica_ip; replica_qp]; 
 
%--------------------------------------------- 
% cycle through data bit by bit 
 
clear phi dphi; 
 
for bn = 1:number_of_dbits; 
    
    %--------------------------------------------- 
    % generate pointers to the samples in the chip sequence 
    % that indicate the start and end of the bit 
    % d1, d2 = pointers to first and last samples of data bit 
    % r1, r2 = pointers to first and last samples in replica bit 
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    if bn==1; 
        % need to account for filter transient in first bit 
        load ('shapingfilter_params'); 
        filterlag = n/2; 
        d1 = filterlag + 1; 
      d2 = d1 + samples_per_bit - 1; 
        r1 = d1; 
        r2 = d2; 
    else  
        d1 = d1 + samples_per_bit; 
        d2 = d1 + samples_per_bit - 1; 
        r1 = r1 + samples_per_bit; 
        r2 = r1 + samples_per_bit - 1; 
    end 
 
     %-------------------------------------- 
     % run the Delay Lock Loop 
     [shift] = DLL(data,replica,d1,d2,r1,r2); 
      % shift = 0; 
      
     % LPF the shift to remove noise jitter 
     shift_lpf = fix(shifts(end)*a + shift*(1-a));   %filtered shift 
 
     shifts = [shifts shift_lpf]; 
      
     r1 = r1 + shift_lpf; 
     r2 = r2 + shift_lpf; 
      
 %--------------------------------------------- 
 %cycle through each of the fixed rake taps 
    
         for tn = 1:Ntaps;   % cycle through each tap        
              
             % generate tap delay 
             td = (tn-1).*samples_per_chip;  
              
    % correlate data to replica for each tap delay 
             % integrate and dump 
             xv = data(d1+td:d2+td).*replica_ip(r1:r2); 
     x(tn) = sum(xv)./length(xv); 
     yv = data(d1+td:d2+td).*replica_qp(r1:r2); 
     y(tn) = sum(yv)./length(yv); 
 
              
             allx = [allx x(1)]; 
             ally = [ally y(1)]; 
      
 end                      % get next tap 
 
    % determine the mag and phase at the output of each tap 
    j = sqrt(-1); 
    c = x + j*y; 
    cmag = abs(c); 
    cphase = angle(c); 
     

 114 



    %--------------------------------------------- 
    % Determine the voltage level at each tap output for each bit 
    % by Differentially demodulating each tap before combining 
  
    phi(bn,:) = cphase; 
    mag(bn,:) = cmag; 
     
    % for the first channel bit initialize the variable vectors 
    if bn==1 
        dphi(bn,1:length(c)) = NaN; 
        dx(bn,1:length(c)) = NaN; 
        dy(bn,1:length(c)) = NaN; 
        tapvoltage(bn,1:length(c)) = NaN; 
         
    % for the remaining bits determine the voltage at each tap output     
    else 
        dphi(bn,:) = phi(bn,:) - phi((bn-1),:); 
         
        dx(bn,:) = cos(dphi(bn,:)); 
        dy(bn,:) = sin(dphi(bn,:)); 
        dphi_new(bn,:) = atan2(dy(bn,:),dx(bn,:)); 
         
        tapvoltage(bn,:) = (pi/2) - abs(dphi_new(bn,:)); 
         
        % zero the tap voltages that are below the noise threshold 
        % that is they have a mag above a noise threshold 
        below_thresh = (mag(bn,:)<(tap_threshold.*(mag(bn,1)))); 
        p = find(below_thresh==1); 
        tapvoltage(bn,p) = 0; 
    end 
 
    %--------------------------------------------- 
    % Sum the outputs of all taps 
     
    op_volts(bn) = sum(tapvoltage(bn,:)); 
         
end   % get the next bit 
 
%--------------------------------------------- 
% Make hard and soft decision 
     
hardbits = (sign(op_volts) + 1)./2; 
softbits = op_volts; 
 
%******************************************** 
% generate outputs 
 
varargout{1} = hardbits(2:end); 
varargout{2} = softbits(2:end); 
varargout{3} = shifts; 
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function [varargout] = dsss_demod_adaptive(varargin)  
 
%*********************************************************** 
% DEMODULATOR - USING A ADAPTIVE TAP RAKE RECEIVER 
% 
% This functions Demodulates the DS-IQ-DBPSK signal 
% using a RAKE receiver  
% input - output of the channel simulator 
% output - hard and soft bit sequences 
% 
% developed by Peter Duke September 2002 
% last modified 2/9 
%*********************************************************** 
 
%******************************************** 
% Initialize the Demodulator 
 
%-------------------------------------------- 
% Read in the data  to be processed by the RAKE receiver 
data = varargin{1}; 
 
%----------------------------------------------- 
% Setup modem using settings in modem_params.mat 
% and check that it is set up correctly 
 
load ('modulation_params'); 
load ('rake_params');           %loads the number of taps and threshold 
 
% check that tx and rx are conFigured the same 
config_error_check('demod') 
 
% initialize variables  
shift = 0; 
shifts = 0; 
allx = [ ]; 
ally = [ ]; 
 
%******************************************** 
% Acquire the Packet Data 
 
load ('acqframe_params'); 
 
if acq_method == 1; 
     
    [first_data_sample, multipath, window, index_corr_peak] = acquire_sync(data); 
    % load first_data_sample 
 
    %----------------------------------------------- 
    % determine where the adaptive taps should be placed 
     
        [taplocations] = get_rake_taps(multipath, window, index_corr_peak, ht_threshold); 
        %  load taplocations; 
        %  taplocations 
    %----------------------------------------------- 
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    data = data(first_data_sample:end); 
 
elseif acq_method ==2; 
     
    data = data; 
     
end 
 
%******************************************** 
% Demodulate the Data using DBPSK or I-Q DBPSK 
 
%--------------------------------------------- 
% determine repetitions/portion of orignal gold code required 
% to chip entire output 
 
number_of_dbits = packet_length + 1; 
total_chips_needed = number_of_dbits.*chips_per_bit; 
number_of_repetitions = ceil(total_chips_needed./length(code)); 
longcode = repmat(code, 1, number_of_repetitions); 
 
%--------------------------------------------- 
% Generate replica of entire modulated and shapped chipping sequence 
 
% generate chip sequence for all data  
chip_sequence_ip = longcode(1,1:(chips_per_bit.*number_of_dbits)); 
chip_sequence_qp = longcode(2,1:(chips_per_bit.*number_of_dbits)); 
 
% Upsample chip sequence to fs 
sampled_chips_ip = upsampler(chip_sequence_ip, samples_per_chip); 
sampled_chips_qp = upsampler(chip_sequence_qp, samples_per_chip); 
 
% pulse shape the upsampled sequence using shapingfilter.m 
shaped_chips_ip = shapingfilter(sampled_chips_ip); 
shaped_chips_qp = shapingfilter(sampled_chips_qp); 
 
% modulate with carrier 
t = [0:1/fs:(length(shaped_chips_ip)/fs)-1/fs]; 
carrier_ip = 2.*cos(2.*pi.*fcarrier.*t); 
carrier_qp = -2.*sin(2.*pi.*fcarrier.*t); 
 
replica_ip = shaped_chips_ip.*carrier_ip; 
replica_qp = shaped_chips_qp.*carrier_qp; 
replica = [replica_ip; replica_qp]; 
 
%--------------------------------------------- 
% cycle through data bit by bit 
 
clear phi dphi; 
 
for bn = 1:number_of_dbits; 
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    %--------------------------------------------- 
    % generate pointers to the samples in the chip sequence 
    % that indicate the start and end of the bit 
    % d1, d2 = pointers to first and last samples of data bit 
    % r1, r2 = pointers to first and last samples in replica bit 
     
    if bn==1; 
        % need to account for filter transient in first bit 
        load ('shapingfilter_params'); 
        filterlag = n/2; 
        d1 = filterlag + 1; 
        d2 = d1 + samples_per_bit - 1; 
        r1 = d1; 
        r2 = d2; 
    else  
        d1 = d1 + samples_per_bit; 
        d2 = d1 + samples_per_bit - 1; 
        r1 = r1 + samples_per_bit; 
        r2 = r1 + samples_per_bit - 1; 
    end 
 
     %-------------------------------------- 
     % run the Delay Lock Loop 
     [shift] = DLL(data,replica,d1,d2,r1,r2); 
     % shift = 0; 
      
     % LPF the shift to remove noise jitter 
     shift_lpf = fix(shifts(end)*a + shift*(1-a));    %filtered shift 
 
     shifts = [shifts shift_lpf]; 
      
     r1 = r1 + shift_lpf; 
     r2 = r2 + shift_lpf; 
      
 %--------------------------------------------- 
 %cycle through each of the adaptive rake taps 
    
          for tn = 1:length(taplocations)  %cycle through each tapfor adaptive taps 
              
             % generate tap delay 
             td = taplocations(tn)-1;  
              
    % correlate data to replica for each tap delay 
             % integrate and dump 
             xv = data(d1+td:d2+td).*replica_ip(r1:r2); 
     x(tn) = sum(xv)./length(xv); 
     yv = data(d1+td:d2+td).*replica_qp(r1:r2); 
     y(tn) = sum(yv)./length(yv); 
 
              
             allx = [allx x(1)]; 
             ally = [ally y(1)]; 
      
 end                             %get next tap 
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    % determine the mag and phase at the output of each tap 
    j = sqrt(-1); 
    c = x + j*y; 
    cmag = abs(c); 
    cphase = angle(c); 
     
    %--------------------------------------------- 
    % Determine the voltage level at each tap output for each bit 
    % by Differentially demodulating each tap before combining 
  
    phi(bn,:) = cphase; 
    mag(bn,:) = cmag; 
     
    % for the first channel bit initialize the variable vectors 
    if bn==1 
        dphi(bn,1:length(c)) = NaN; 
        dx(bn,1:length(c)) = NaN; 
        dy(bn,1:length(c)) = NaN; 
        tapvoltage(bn,1:length(c)) = NaN; 
 
    % for the remaining bits determine the voltage at each tap output     
    else 
        dphi(bn,:) = phi(bn,:) - phi((bn-1),:); 
         
        dx(bn,:) = cos(dphi(bn,:)); 
        dy(bn,:) = sin(dphi(bn,:)); 
        dphi_new(bn,:) = atan2(dy(bn,:),dx(bn,:)); 
         
        tapvoltage(bn,:) = (pi/2) - abs(dphi_new(bn,:)); 
         
        % zero the tap voltages that are below the noise threshold 
        % that is they have a mag above a noise threshold 
        below_thresh = (mag(bn,:)<(tap_threshold.*(mag(bn,1)))); 
        p = find(below_thresh==1); 
        tapvoltage(bn,p) = 0; 
    end 
 
    %--------------------------------------------- 
    % Sum the outputs of all taps 
     
    op_volts(bn) = sum(tapvoltage(bn,:)); 
         
end % get the next bit 
 
%--------------------------------------------- 
% Make hard and soft decision 
hardbits = (sign(op_volts) + 1)./2; 
softbits = op_volts; 
 
%******************************************** 
% generate outputs 
 
varargout{1} = hardbits(2:end); 
varargout{2} = softbits(2:end); 
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function [varargout] = acquire_sync(varargin); 
 
%******************************************* 
% ACQUIRE SYNCHRONIZATION 
% This function acquires the 3 PN sequences 
% that were appended to the start of the data frame 
% and determines the start of the first data sample 
% 
% based on code developed by Etham Sozer 
% modifed by Peter Duke September 2002 
% last modified 2/9 
%******************************************* 
 
%----------------------------------------------- 
% Read in the data 
 
data = varargin{1}; 
 
%----------------------------------------------- 
% Get acqustion frame settings from acqframe_params.mat 
 
load ('acqframe_params'); 
load ('shapingfilter_params'); 
 
%--------------------------------------------- 
% define and initialize additional variables, flags and counters 
 
window = (len+sep).*samples_per_chip; % window length in samples  
filter_delay = n + 1; 
 
found = 0;   % flag set to 1 when 3 PN sequences found 
acq_sample = 0;  % accumulate filtered data in y_acc vector 
 
%--------------------------------------------- 
% generate the Matched Filter coefficients 
 
c = code(:,1:len); 
 
sampled_chips_ip = upsampler(c(1,:),samples_per_chip); 
sampled_chips_qp = upsampler(c(2,:),samples_per_chip); 
 
MF_ip = fliplr(shapingfilter(sampled_chips_ip)); 
MF_qp = fliplr(shapingfilter(sampled_chips_qp)); 
 
% initialize the initial conditions of the filter 
Zic_ip = zeros(1,(length(MF_ip)-1)); 
Zic_qp = zeros(1,(length(MF_qp)-1)); 
 
 
%--------------------------------------------- 
% Slide windows through the incoming data 
% the second window offset by half the window length 
% looking for the 3 generated the gold code sequences 
% stops when the 3 correlation peaks have been found 
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for  split_window = 0:1 
     
    first = 1;       % pointer to first sample in the window 
    if  split_window == 1;  % offset window 
        first = first + window/2; 
    end 
     
    Npeak = 1;          % number of peaks found 
    y_acc    = [];         % vector for accumulating envelope 
     
    %----------------------------------- 
    while (~found) 
         
        last = first + window - 1; % pointer to last sample in the window 
        if last > length(data) 
            error('CANNOT ACQUIRE THE SYNCHRONIZATION FRAME'); 
            return;      % jump out of loop when end of the data reached 
        end; 
         
        %----------------------------------- 
        % demodulate the signal in the window 
  t = first:last; 
  carrier = exp(-j.*2.*pi.*fcarrier.*t./fs ); 
   
  signal_demod = data(first:last) .* carrier; 
  [y1, Zic_ip] = filter( MF_ip, 1,    signal_demod, Zic_ip); 
  [y2, Zic_qp] = filter( MF_qp, 1, j.*signal_demod, Zic_qp); 
         
  y = abs( y1 - y2 ).^2 ./ length(signal_demod).^2; % he had length(signal_demod)^2 
  y_acc = [ y_acc y ]; 
   
        mfoutput = y_acc; 
 
        %----------------------------------- 
        % find index and magnitude of correlation peak in the window 
         
  peak_subindex = find( y == max(y) );   % find indices of peaks 
  index_corr_peak(Npeak) = peak_subindex(1) + first - 1; % store the index of the first peak 
  mag_corr_peak(Npeak) = max(y); 
         
        %----------------------------------- 
        % checking distance between 1st/2nd peaks and 2nd/3rd peaks 
        % are within 2% of the window lenth 
         
        if  (Npeak >= 2); 
            if ( abs(index_corr_peak(Npeak) - index_corr_peak(Npeak-1) - window ) > 0.02.*window ) 
                index_corr_peak(1) = index_corr_peak(Npeak); % put the new peak in the first position 
                Npeak = 1; % if not within tolerance reset the peak counter 
            end; 
        end; 
         
        %----------------------------------- 
        % once all 3 peaks are found 
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        % determine the index of the start of the data packet = mean of the 3 peak indices 



         
        if (Npeak == 3) % ie if we have found all  peaks 
            first_data_sample = round( mean(index_corr_peak(1:3)) ) + ((2.*sep) + len).*samples_per_chip+ 1; 
            mean_mag_corr_peak = mean(mag_corr_peak(1:3)); 
            found = 1; 
            multipath = y_acc; 
        end; 
         
        % advance the peak counter if we have a nonzero peak 
        if mag_corr_peak(Npeak) ~= 0 
            Npeak = Npeak + 1; 
        end 
         
        first = first + window; % advance the sample counter to the next window 
         
    end;  % next window 
     
     
end; % next offset window  
 
%----------------------------------------------- 
% generate the output 
 
varargout{1} =  first_data_sample; 
varargout{2} = multipath; 
varargout{3} = window; 
varargout{4} = index_corr_peak; 
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function [varargout] = get_rake_taps(varargin); 
 
%*********************************************************** 
% DETERMINE THE  LOCATION FOR THE ADAPTIVE RAKE TAPS 
% 
% This determines where the adaptive RAKE taps 
% should be located 
% it uses the estimate of the channel impulse reponse 
% found from the acquisition functions 
% matched filter output 
% 
% developed by Peter Duke September 2002 
% last modified 2/9 
%*********************************************************** 
 
%------------------------------------------------     
% define and load variables 
multipath = varargin{1}; 
window = varargin{2}; 
index_corr_peak = varargin{3}; 
ht_threshold = varargin{4}; 
 
%------------------------------------------------     
% average the three matched filter outputs passed from acquire_sync 
s1 = multipath(index_corr_peak(1):index_corr_peak(1)+window/2-1); 
s2 = multipath(index_corr_peak(2):index_corr_peak(2)+window/2-1); 
s3 = multipath(index_corr_peak(3):index_corr_peak(3)+window/2-1); 
stotal = (s1+s2+s3)./3; 
x1 = 1:(window/2); 
 
% find the 5 or fewer largest multipath components 
% that are within 5% of the first arrival 
i1 = mmpeaks(stotal); 
m1 = stotal(i1); 
m2 = fliplr(sort(m1)); 
m3 = m2(1:5); 
i2 = find(m3>ht_threshold*m3(1)); 
 
% loop through to find the index of these largest components 
% the is required because there may be less than 5 
n=1; 
i3=1; 
while n<length(i2); 
    n=n+1; 
    i3 = [i3 find(stotal == m3(n))]; 
end 
     
taplocations = i3; 
 
%------------------------------------------------     
% generate output 
 
varargout{1} = taplocations 
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function [varargout] = DLL(varargin); 
 
%******************************************* 
% DELAY LOCKED LOOP 
% This function keeps the receiver generate PN replica aligned 
% with the received signals PN sequence 
% input - receiver generated relplica and received data 
% output - error signal indicating number of samples 
%          reciever replica need to be shifted 
% 
% modifed by Peter Duke September 2002 
% last modified 2/9 
%******************************************* 
 
 
%---------------------------------------- 
% define input variables 
 
data = varargin{1}; 
replica = varargin{2}; 
d1 = varargin{3}; 
d2 = varargin{4}; 
r1 = varargin{5}; 
r2 = varargin{6}; 
 
load modulation_params; 
load shapingfilter_params; 
Tc = samples_per_chip; 
 
%---------------------------------------- 
% get first bit of data 
 
signal = data(d1:d2); 
 
%---------------------------------------- 
% generate the left and right shifted replicas 
 
replica_ip = replica(1,:); 
replica_qp = replica(2,:); 
 
%generate replica 
delay = 0; %delay in samples; 
g1 = replica_ip(r1+delay:r2+delay); 
g2 = replica_qp(r1+delay:r2+delay); 
 
%generate a left shifted replica 
delay = -Tc/2; %delay in samples; 
dm1 = replica_ip(r1+delay : r2+delay); 
dm2 = replica_qp(r1+delay : r2+delay); 
 
%generate a right shifted replica 
delay = Tc/2; %delay in samples; 
dp1 = replica_ip(r1+delay:r2+delay); 
dp2 = replica_qp(r1+delay:r2+delay); 
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gc = g1 + j*g2; 
dp = dp1 + j*dp2; 
dm = dm1 + j*dm2; 
 
%---------------------------------------- 
% determine the required shift 
 
% generate cross-correlations 
corr_left  = abs(xcorr(signal,dm)); 
corr_right = abs(xcorr(signal,dp)); 
 
% generate the S-curve 
diff = corr_left.^2 - corr_right.^2; 
vv = diff/max(diff); 
save plot7 vv; 
 
% determine the zero crossing and translate that 
% to the number of samples to shift 
lag0 = (length(vv)+1)./2; 
[vp,pp] = max(vv(lag0-Tc:lag0)); 
pp; 
pp = pp+(lag0-Tc)-1; 
[vm,pm] = min(vv(lag0:lag0+Tc)); 
pm; 
pm = pm+lag0-1; 
xcross = pp + ((pm-pp)/2); 
shift = round(lag0-xcross); 
 
%---------------------------------------- 
% generate the output 
 
varargout{1} = shift; 
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function [varargout] = error_sum(varargin) 
 
%******************************************* 
% ERROR SUMMER 
% 
% This function calculate the bit and packet error rates 
% by comparing the received sequence 
% to the transmitted sequence 
% 
% developed by Peter Duke September 2002 
% last modified 2/9 
%******************************************* 
 
 
%------------------------------------------------ 
% get input variables 
 
channel_type = varargin{1}; 
N = varargin{2}; 
EbNo = varargin{3}; 
SNR = varargin{4}; 
channel_errors = varargin{5}; 
total_channel_errors = varargin{6}; 
packet_errors_hdd = varargin{7}; 
packet_errors_sdd = varargin{8}; 
 
%--------------------------------------------------- 
%generate an error output file 
 
title = ['n   '; 'ce  '; 'he  '; 'se  ']; 
nn = [1:N]; 
errors = num2str([nn; total_channel_errors'; ... 
                              packet_errors_hdd'; packet_errors_sdd']);          
error_summary = [title errors]; 
 
results = [1:N; total_channel_errors'; ... 
                 packet_errors_hdd'; packet_errors_sdd']; 
 
c = sum(results(2,:)); 
chd = sum(results(3,:)); 
csd = sum(results(4,:)); 
p = length(find(results(2,:)>.1)); 
phd = length(find(results(3,:)>.1)); 
psd = length(find(results(4,:)>.1)); 
 
details = results; 
summary = [channel_type; N; EbNo; SNR; ... 
                     c; chd; csd; p; phd; psd]; 
 
% generate output 
varargout{1}=summary;  
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function varargout = upsampler(varargin) 
 
%******************************************* 
% UP SAMPLER 
% 
% This function upsamples the binary sequences passed to it 
% by the user defined amount 
% no filtering is performed instead 
% 1s or 0s are appropriately inserted into the sequence 
% 
% developed by Peter Duke September 2002 
% last modified 2/9 
%******************************************* 
 
 
data = varargin{1}; 
M = varargin{2}; 
 
samples = ones(1,M); 
matrix = samples' * data; 
out = reshape(matrix,1,prod(size(matrix))); 
 
varargout{1} = out;  
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function [varargout] = config_error_check(oper,varargin); 
 
%******************************************* 
% CONFIGURATION ERROR CHECHER 
% 
% This function confirms that the transmitter and receiver 
% modulation parameters have been setup the same 
% 
% developed by Peter Duke September 2002 
% last modified 2/9 
%******************************************* 
 
load ('modulation_params'); 
load ('acqframe_params'); 
 
switch oper 
 
%----------------------------------------------- 
case 'modulator' 
     
data = varargin{1}; 
 
% check correct modulation 
if modulation_method~=1 & modulation_method~=2 
    error(sprintf('ERROR\n Incorrect Modulator Being Used\n change modem_setup.m file or use another 
modulator')); 
end 
 
% check spreading factor is an integer 
if ( chips_per_bit ~= fix( chips_per_bit ) ); 
    error(sprintf('ERROR\n spreading factor is not an integer\n change Rb and/or Rc in the 
modem_setup.m')); 
end 
 
% check packet length 
if ( packet_length ~= length(data) ); 
    error(sprintf('ERROR\n Receiver is expecting different packet length\n packet length must be = 
2*(Ndata bits + constraint length -1)\n option1 - change packet length in modem_setup.m\n option2 - 
change the number of data bits\n')); 
end 
 
%----------------------------------------------- 
case 'demod' 
 
% check correct modulation 
if modulation_method~=1 & modulation_method~=2 
    error(sprintf('ERROR\n Incorrect Modulator Being Used\n change modem_setup.m file or use another 
modulator')); 
end 
 
end  
 
 
 

 128 



LIST OF REFERENCES 

[1] J. A. Rice, R. K. Creber, C. L. Fletcher, P .A. Baxley, D .E. Rogers, and D. C. 
Davsion, “Seaweb Underwater Acoustic Nets,” Space and Naval Warfare Systems 
Center San Diego Biennial Review 2001, pp. 234-243, 2001. 

[2] P. A. Baxley, H. Bucker, V. K. McDonald, and J. A. Rice, “Shallow-Water 
Acoustic Communications Channel Modeling using Three-Dimensional Gaussian 
Beams,” Space and Naval Warfare Systems Center San Diego Biennial Review 
2001, pp. 251-262, 2001. 

[3] R. J. Urick, Principles of Underwater Sound, 3rd ed. New York: McGraw-Hill, 
1983. 

[4] F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt, Computational 
Ocean Acoustics,. New York: Springer-Verlag, 2000. 

[5] R. Coates, Underwater Acoustic Systems. New York: John Wiley & Sons Inc, 
1989. 

[6] L. Brekhovskikh and Y. Lysanov, Fundamentals of Ocean Acoustics. Berlin: 
Springer-Verlag, 1982. 

[7] B. Sklar, Digital Communications, 2nd ed. New Jersey: Prentice Hall, 2001. 

[8] T. S. Rappaport, Wireless Communications Principles and Practice, 2nd ed. New 
Jersey: Prentice Hall, 2002. 

[9] J. A. Catipovic, “Performance Limitations in Underwater Acoustic Telemetry,” 
IEEE Journal of Oceanic Engineering, Vol. 15, pp. 205-216, 1990. 

[10] D. B. Kilfoyle and A. B. Baggeroer, “The State of the Art in Underwater Acoustic 
Telemetry,” IEEE Journal of Oceanic Engineering, Vol. 25, pp. 4-27, 2000. 

[11] M. Stojanovic, J. G. Proakis, J. A. Rice, and M. D. Green, “Spread Spectrum for 
Underwater Acoustic Telemetry,” presented at IEEE OCEANS’98 Conference, 
Nice, France, September 1998. 

[12] J. G. Proakis, Digital Communications, 4th ed. New York: McGraw-Hill, 2001. 

[13] J. De Nayerlaan, “Spread Spectrum (SS) introduction,” [http://www.sss-
mag.com/pdf/Ss_jme_denayer_intro_print.pdf], September 2002. 

[14] R. L. Peterson, R. E. Ziemer, and D. E. Borth, Introduction to Spread Spectrum 
Communications. New Jersey: Prentice Hall, 1995. 

[15] R. E. Ziemer, Introduction to Digital Communication, 2nd ed. New Jersey: 
Prentice Hall, 2001. 

 

 

 129 



[16] E. M. Sozer, J. G. Proakis, M. Stojanovic, J. A. Rice, A. Benson, and M. Hatch, 
“Direct Sequence Spread Spectrum Based Modem for Under Water Acoustic 
Communication and Channel Measurement,” presented at IEEE OCEANS’99 
Conference, Seattle, WA, September 1999. 

[17] A. J. Viterbi, CDMA Principles of Spread Spectrum Communication. 
Massachusetts: Addison-Wesley, 1995. 

[18] S. B. Wicker, Error Control Systems for Digital Communications and Storage. 
New Jersey: Prentice Hall, 1995. 

[19] K. Karkkainen, “Optimized PN Sequences Available for Simulation of CDMA 
Systems,” [http://www.ee.oulu.fi/~kk/], September 2002. 

[20] M. B. Porter, “Ocean Acoustics Library,” [http://oalib.saic.com/], September 
2002. 

[21] G. C. Clarke, Jr and J. B. Cain, Error-Correction Coding for Digital 
Communications. New York: Plenum Press, 1981. 

[22] D. Hanselman and B. Littlefield, “Mastering Matlab Toolbox Version 6,” 
[http://www.eece.maine.edu/mm/MM6/tbx.html], September 2002. 

 

 

 130 



INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
Ft. Belvoir, Virginia  
 

2. Dudley Knox Library 
Naval Postgraduate School 
Monterey, California 
 

3. Chairman, Code EC 
Electrical and Computer Engineering Department 
Naval Post Graduate School 
Monterey, California 
 

4. Dr. Roberto Cristi, Code EC/Cx 
Electrical and Computer Engineering Department 
Naval Postgraduate School 
Monterey, California 
 

5. Joe Rice, Code PH/Rj 
Physics Department 
Naval Post Graduate School 
Monterey, California 
 

 

 

 

 131 


	I.INTRODUCTION
	A.BACKGROUND
	B.SEAWEB UTILITY PACKET REQUIREMENTS
	C.GOALS AND METHODOLOGY
	D.BENEFITS OF THE STUDY
	E.THESIS ORGANIZATION

	II. UNDERWATER ACOUSTIC COMMUNICATION CHANNEL CHARACTERISTICS
	A.BAND-LIMITED CHANNEL
	B.NON-GAUSSIAN NOISE CHANNEL
	C.FADING CHANNEL
	1.Time Spreading
	2.Doppler Spreading
	Doubly Spread Channels


	III.DIRECT-SEQUENCE SPREAD-SPECTRUM (DSSS) SYSTEMS
	A.DIRECT-SEQUENCE SPREAD-SPECTRUM OVERVIEW
	1.Benefits of Spread-Spectrum Techniques
	2.Direct-Sequence Spread-Spectrum
	3.Interference Suppression

	B.PSEUDO-RANDOM NOISE (PN) SPREADING SEQUENCES
	1.Maximal Length Sequences
	2.Gold Codes

	C.DIRECT-SEQUENCE DIFERENTIALLY ENCODED BINARY PHASE-SHIFT KEYING WITH QUADRATURE SPREADING (DS-IQ-DBPSK)
	1.Binary Phase-Shift Keying (BPSK)
	2.Differential Encoding
	3.Chipping the DBPSK Signal
	4.Pulse-shaping
	5.Balanced Quadrature Modulation of the DS DBPSK Signal
	6.Synchronization of the PN Sequence in the Receiver
	a.Acquisition
	b.Tracking

	7.Demodulation of DS-IQ-DBPSK
	8.LPD Properties of DS-IQ-DBPK

	D.RAKE RECEIVER
	E.CHANNEL CODING
	1.Overview of Channel Coding
	2.Convolutional Coding
	3.Hard and Soft Decision Decoding
	4.Block Interleaving

	F.PERFORMANCE ANALYSIS OF COMMUNICATIONS SYSTEMS

	IV.MATLAB IMPLEMENTATION OF THE SEAWEB TRANSMITTER AND RECEIVER
	A.TRANSMITTER
	1.Channel Coding
	2.Modulation
	3.Acquisition Frame

	B.CHANNEL MODELS
	1.Ideal AWGN Channel
	2.Modeled Multipath Channel

	C.RECEIVER

	V.THEORETICAL PERFORMANCE AND MONTE CARLO SIMULATION RESULTS
	A.THEORECTICAL PERFORMANCE OF DS-IQ-DBPSK IN AWGN AND RAYLEIGH FADING
	1.Performance in AWGN
	2.Performance in a Rayleigh Fading Channel

	B.SIMULATION RESULTS FOR AWGN CHANNEL
	1.Receiver Performance – Bit Error Rate
	2.Receiver Performance - Packet Error Rate
	3.Performance of Synchronization Algorithms
	4.Low Probability of Detection

	C.SIMULATION RESULTS FOR THE MODELED SHALLOW WATER CHANNEL
	1.Receiver Performance with No RAKE
	2.Receiver Performance Using RAKE with 30 Fixed Spaced Taps
	3.Receiver Performance Using RAKE with 5 Adaptively Spaced Taps
	4.Receiver Performance When Acquisition Frame and Data Frame Have Equal SNRs.
	5.Summary of Performance


	VI.CONCLUSION
	A.FINDINGS
	B.FOLLOW-ON WORK

	APPENDIX A.  SOFTWARE USERS MANUAL
	APPENDIX B.  MATLAB CODE
	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

